Reactions of Borane Anions with Polarized Acetylenes. Synthesis and Structural Characterization of New Polyhedral Di-, Tri-, and Tetracarbon Carboranes

Kai Su, Patrick J. Carroll, and Larry G. Sneddon*

Contribution from the Department of Chemistry. University of Pennsylvania, Philadelphia. Pennsylvania 19104-6323

Received June 16, 1993*

Abstract: A new synthetic strategy for achieving monocarbon or dicarbon insertions into polyhedral boron cage compounds, involving the reactions of polarized terminal alkynes with polyhedral borane and carborane anions, is reported. Monocarbon insertion is observed in the reactions of the arachno-6,8-C₂B₇H₁₂- anion with cyanoacetylene, methyl propiolate, and 3-butyn-2-one to give new polyhedral arachno-tricarbaboranes of the general formula arachno-6- $(RCH_2)-5,6,7-C_3B_7H_{12}$, where R = CN (1), C(O)OMe (2), or C(O)Me (3). Single-crystal X-ray studies of 1 and 2 have shown that these compounds, consistent with their 26 skeletal-electron counts, adopt 10-vertex arachno cage geometries based on an icosahedron missing two vertices, with the carbon atoms occupying adjacent positions on the open 6-membered face. 1 was found to undergo cage degradation with aqueous ammonium hydroxide to give the new hypho tricarbaborane, $hypho-1-(NCCH_2)-1,2,5-C_3B_6H_{12}^{-1}$ (5), the structure of which was established by a singlecrystal X-ray study. Dicarbon insertion is observed in the reactions of $nido-5,6-C_2B_8H_{11}^-$ with methyl propiolate and $nido-B_{10}H_{13}^{-}$ with cyanoacetylene which result in the production of the isoelectronic arachno-tetracarbaborane, arachno-8-(CH₃OC(O))-7,8,9,10-C₄B₈H₁₃ (6), and *arachno*-dicarbaborane, *arachno*-8-(NC)-7,8-C₂B₁₀H_{14⁻} (7), clusters, respectively. Single-crystal X-ray studies show that, consistent with their arachno 30 skeletal-electron counts, both compounds adopt structures based on a bicapped hexagonal antiprism missing two vertices. The carbon atoms in both compounds occupy adjacent positions on the puckered six-membered open faces. Two-carbon insertion, accompanied by the loss of one boron, is observed in the reactions of nido-B₁₀H₁₃⁻ with 3-butyn-2-one or methyl propiolate, which produced *nido*-7-(RC(O))-7,8-C₂B₉H₁₁⁻ ($\mathbf{R} = Me(\mathbf{8})$ or MeO (9)) in high yields. In both monocarbon and dicarbon insertions, the reactions are proposed to involve an initial nucleophilic attack of the anion at the terminal alkyne carbon. The isolation of arachno-[endo-4-(NCCH=CH)]-6,8-S₂B₇H₈⁻ (10) from the reaction of arachno-6,8-S₂B₇H₈⁻ with cyanoacetylene provides additional support for this mechanism.

Introduction

In this paper we report both a new synthetic strategy by which carbon insertions into polyhedral boron anions may be achieved and the use of this method to synthesize important new classes of carboranes that have been inaccessible with conventional synthetic procedures. We have previously shown that either monocarbon or CN cage-insertion products may result from the reactions of nitriles with polyhedral borane anions.¹

$$arachno-6,8-S_{2}B_{7}H_{8}^{-} + MeC \Longrightarrow N \xrightarrow[(2)]{(1) reflux} \xrightarrow[(2)]{(2)} H^{+}$$

$$hypho-5-CH_{3}-5,11,7,14-CNS_{2}B_{7}H_{9} (1)$$

$$arachno-6,8-C_{2}B_{7}H_{12}^{-} + MeC \Longrightarrow N \xrightarrow[(2)]{(1) reflux,-NH_{3}} \xrightarrow[(2)]{(2)} H^{+}$$

$$iido-6-CH_3-5,6,9-C_3B_7H_{10}$$
 (2)

In these reactions, we proposed that the key step was the initial nucleophilic attack of the borane anion at the positively charged nitrile carbon. Subsequent hydroboration of the nitrile and intramolecular condensation could then occur to produce (eq 1) the imine insertion products. Alternatively, complete reduction of the nitrile and deammination can take place resulting (eq 2) in monocarbon insertion. These results suggested that borane or carborane anions might be sufficiently nucleophilic to attack positive sites in other polarized triple bonds, such as those found in alkynes containing strongly electron withdrawing substituents, to form either mono- or dicarbon-insertion products. In a previous

communication,² we reported the use of this strategy for the high-yield synthesis of the first example of a polyhedral *arachno*-tricarbaborane, *arachno*-6-(NCCH₂)-5,6,7-C₃B₇H₁₂. We report here full details of this and related reactions of other polyhedral boron anions with polarized terminal alkynes that have resulted in new routes to di-, tri-, and tetracarbon carboranes.

Experimental Section

All manipulations were carried out with use of standard high vacuum or inert-atmosphere techniques as described by Shriver.³

Materials. Decaborane, nido-B10H14, was obtained from Callery Chemical Co. and sublimed before use. The compounds, arachno-6,8- $S_2B_7H_{9,4}$ arachno-6,8- $C_2B_7H_{13,5}$ and nido-5,6- $C_2B_8H_{12,6}$ and their monoanions were prepared as reported previously. The anion, nido-B₁₀H₁₃, was generated from the reaction of nido-B₁₀H₁₄ with either KH or NaH as described below. Cyanoacetylene was prepared according to the literature method7 from propiolamide, and its THF solution was stored at 0 °C as a stock solution. Methyl propiolate (97%), 3-butyn-2-one (99%), HCl-diethyl ether solution, PCl₃, D₂O, and bis(triphenylphosphoranylidene)ammonium chloride (PPN+C1-) were purchased from Aldrich and used as received. Tetramethylammonium chloride (TMA+Cl-) was purchased from Aldrich and dried under vacuum at 110 °C for 2 h before use. THF, diethyl ether, hexane, and pentane were dried over Na/benzophenone and freshly distilled before use. Methylene chloride was dried over CaH₂ and distilled before use. Oil-dispersed sodium hydride was obtained from Aldrich, washed with dry hexane

(7) Moureu, C.; Bongrand, J. C. Ann. Chim. (Paris) 1920, 9, 14.

<sup>Abstract published in Advance ACS Abstracts, October 1, 1993.
(1) Kang, S. O.; Furst, G. T.; Sneddon, L. G. Inorg. Chem. 1989, 28, 2339-2347.</sup>

⁽²⁾ Su, K.; Barnum, B.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc.
1992, 114, 2730-2731.
(3) Shriver, D. F.; Drezdzon, M. A. Manipulation of Air Sensitive

⁽³⁾ Shriver, D. F.; Drezdzon, M. A. Manipulation of Air Sensitive Compounds, 2nd ed.; Wiley: New York, 1986.
(4) Plešek, J.; Heřmánek, S.; Janoušek, Z. Collect. Czech. Chem. Commun.

⁽⁴⁾ Plesek, J.; Hermanek, S.; Janousek, Z. Collect. Czech. Chem. Commun. 1977, 42, 785–792.

⁽⁵⁾ Garrett, P. M.; George, T. A.; Hawthorne, M. F. Inorg. Chem. 1969,
8, 2008-2009.
(6) Plešek, J.; Heřmánek, S. Collect. Czech. Chem. Commun. 1974, 39,

^{821–826.}

under a nitrogen atmosphere, and then vacuum dried. DCl was prepared by the reaction of PCl₃ with D_2O and purified by fractionation through a -78 °C trap into a -196 °C trap.

Physical Measurements. ¹H NMR spectra at 200.1 MHz, ¹¹B NMR spectra at 64.2 MHz, and ¹³C NMR spectra at 50.3 MHz were obtained on a Bruker AF-200 spectrometer. ¹¹B NMR spectra at 160.5 MHz and ¹³C NMR spectra at 125.7 MHz were obtained on a Bruker AM-500 spectrometer. All ¹¹B chemical shifts are referenced to external BF₃·O- $(C_2H_5)_2$ (0.0 ppm) with a negative sign indicating an upfield shift. All proton and carbon chemical shifts were measured relative to internal residual protons or carbons from the lock solvents and then referenced to Me₄Si (0.0 ppm). High- and low-resolution mass spectra were obtained on a VG-ZAB-E high-resolution mass spectrometer. Diffuse reflectance infrared spectra were obtained on a Perkin-Elmer 7770 Fourier transform spectrometer. Blemental analyses were performed at Robertson Microlit Laboratories Inc., Madison, NJ.

arachno-6-(NCCH₂)-5,6,7-C₃B₇H₁₂ (1). A 100-mL round-bottomed flask fitted with a vacuum stopcock was charged with 1.02 g (9.00 mmol) of arachno-6,8-C₂B₇H₁₃ and 0.20 g (8.33 mmol) of NaH. The flask was connected to the vacuum line and 50 mL of THF was vacuum distilled into the flask at -196 °C. The mixture was then allowed to warm to room temperature. After the gas evolution ceased (~ 20 min), the solution was filtered into another 100-mL flask under a N2 atmosphere. A 0.50-g (9.80 mmol) sample of cyanoacetylene dissolved in 15 mL of THF was slowly dropped into the stirred solution. After 1 h at room temperature, the solution was acidified with 10 mL of HCl-diethyl ether solution (1 M) at -40 °C and then warmed to room temperature. The THF was vacuum evaporated and 20 mL of CH₂Cl₂ was added. The solution was filtered through a layer of silica gel to remove any insoluble materials. Vacuum evaporation of the solvent afforded 1.21 g (7.38 mmol, 82%) of crude product. Sublimation at 50 °C yielded 0.81 g (4.9 mmol, 54.4%) of a white, sweet-smelling solid. For 1: mp, 71-72 °C; $R_f = 0.60$ in CH₂Cl₂/pentane (1:1 v/v); IR (KBr) 3028 (w), 2971 (w), 2943 (m), 2858 (m), 2645 (s), 2560 (vs), 2248 (m), 2006 (w), 1421 (m), 1386 (m), 1301 (m), 1250 (m), 1237 (w), 1209 (s), 1159 (s), 1067 (m), 1024 (s), 939 (s), 889 (m), 861 (w), 818 (m), 762 (m), 733 (w), 698 (w), 684 (m), 648 (w), 606 (w), 591 (w), 513 (w), 478 (w), 460 cm⁻¹ (w). Anal. Calcd: C, 36.66; H, 8.55; N, 8.55. Found: C, 37.09; H, 9.00; N, 7.66. Exact mass calcd for ${}^{12}C_5{}^{11}B_7{}^{14}N^1H_{14}$ 165.1778, found 165.1780.

arachno-6-(NCCH₂)-5,6,7-C₃B₇H₁₁⁻ (1⁻). A 0.12-g (0.73 mmol) sample of arachno-6-(NCCH₂)-5,6,7-C₃B₇H₁₂ and 0.05 g (1.25 mmol) of KH were placed in a 100 mL round-bottomed flask containing a magnetic stirbar. THF (20 mL) was vacuum distilled into the flask at -196 °C. The mixture was slowly warmed to room temperature. After gas evolution ceased, the solution was filtered under N₂ into another 100-mL flask. The ¹¹B NMR spectrum showed arachno-6-(NCCH₂)-5,6,7-C₃B₇H₁₁⁻ as the only product. In order to obtain a ¹H NMR spectrum of the anion, ~0.002 g of arachno-6-(NCCH₂)-5,6,7-C₃B₇H₁₁⁻ was dissolved in THF-d₈ and cooled to -40 °C. A ~0.001-g sample of KH was added and the mixture was allowed to warm to room temperature. As soon as the gas evolution ceased (~2 min at room temperature), the solution was filtered into a NMR tube under argon and its ¹H (and ¹¹B) NMR spectra taken.

arachno-6-(MeOC(O)CH₂)-5,6,7-C₃B₇H₁₂(2). A 0.57-g (5.00 mmol) sample of arachno-6,8-C₂B₇H₁₃, 0.12 g (5.00 mmol) of NaH, and 35 mL of THF were used to generate arachno-6,8-C₂B₇H₁₂- as described above. The solution was filtered into another flask, and 0.46 g (5.51 mmol) of methyl propiolate was added via syringe. As evidenced by the disappearance of the starting material in the ¹¹B NMR spectrum of the reaction mixture, the reaction was complete in about 3 h at room temperature. The solution was then acidified with 5.2 mL of 1 M HCl diethyl ether solution at -30 °C. After the mixture was warmed to room temperature, the solvent was vacuum evaporated and the remaining yellow oil was extracted with 40 mL of pentane. The pentane solution was then filtered through a layer of silica gel. Vacuum evaporation of the solvent resulted in the isolation of 0.56 g (2.85 mmol, 57%) of a light-yellow crude product. Recrystallization from pentane at -30 °C afforded 0.49 g of pure product. For 2: mp, 43-44 °C; $R_f = 0.84$ in CH₂Cl₂/pentane (v/v 1:1); IR (KBr) 3446 (w), 3063 (m), 3007 (m), 2964 (m), 2921 (w), 2836 (m), 2751 (w), 2709 (w), 2638 (s), 2595 (vs), 2553 (vs), 2014 (w), 1730 (s), 1460 (s), 1441 (s), 1432 (s), 1389 (s), 1340 (s), 1241 (s), 1198 (s), 1177 (s), 1156 (m), 1091 (m), 1049 (m), 1021 (s), 993 (s), 950 (m), 886 (m), 815 (m), 765 (w), 730 (m), 694 (m), 638 (m), 602 (w), 574 (w), 517 (w), 464 (w). Anal. Calcd: C, 36.61; H, 8.36. Found: C, 35.73; H, 8.29. Exact mass calcd for ${}^{12}C_6{}^{11}B_7{}^{16}O_2{}^{1}H_{17}$ 198.8000, found 198.7971.

arachno-6-(MeC(O)CH₂)-5,6,7-C₃B₇H₁₂ (3). A 0.25-g (2.19 mmol) sample of arachno-6,8-C₂B₇H₁₃, 0.07 g (2.91 mmol) of NaH, and 20 mL of THF were used to generate arachno-6,8- $C_2B_7H_{12}^-$ as described above. The solution was filtered into another flask and 0.17 g (2.50 mmol) of 3-butyn-2-one was added via syringe. After the reaction mixture was stirred at room temperature for ~ 1 h, it was acidified with 2.5 mL of 1 M HCl-diethyl ether solution at 0 °C and then slowly warmed to room temperature. The solvent was vacuum evaporated and the remaining yellow oil was extracted with 30 mL of pentane. Filtration of the pentane solution through a layer of silica gel, followed by vacuum evaporation of the solvent, resulted in the isolation of 0.20 g (1.11 mmol, 50.7%) of a light-yellow crude product. Recrystallization from pentane at -30 °C afforded 0.15 g of a pure product. For 3: mp, 51-52 °C; $R_f = 0.62$ in CH₂Cl₂/pentane (1:1 v/v); IR (KBr) 3056 (m), 3000 (w), 2957 (s), 2915 (s), 2855 (s), 2645 (s), 2574 (vs), 2021 (m), 1705 (vs), 1407 (s), 1379 (s), 1358 (s), 1322 (m), 1258 (w), 1237 (w), 1166 (s), 1081 (s), 1038 (s), 953 (s), 890 (s), 861 (w), 812 (s), 762 (m), 734 (m), 698 (m), 648 (m), 606 (m), 514 (w), 475 cm⁻¹ (m). Anal. Calcd: C, 39.00; H, 9.41. Found: C, 39.72; H, 9.22. Exact mass calcd for ¹²C₆¹¹B₇¹⁶O¹H₁₇ 182.1931, found 182.1927.

arachno-6-(NCCH=CH)-6,8-C₂B₇H₁₁⁻ (4). A 0.33-g (2.93 mmol) sample of arachno-6,8-C₂B₇H₁₃, 0.07 g (2.92 mmol) of NaH, and 20 mL of THF were used to generate arachno-6,8- $C_2B_7H_{12}^-$ as described above. A cyanoacetylene/THF solution (5.7 mL, 0.52 mmol/mL) was then added dropwise at room temperature. The colorless solution immediately turned light yellow. Analysis of the reaction mixture by ¹¹B NMR after 40 min showed that the starting carborane anion was completely consumed. At this time, a 0.32-g (2.92 mmol) sample of Me₄N+Cl⁻ was added to the flask and the mixture was stirred for 1 h. The solvent was then vacuum evaporated and the residue was dissolved in 20 mL of methylene chloride. After filtration, the methylene chloride solution was added dropwise to 50 mL of diethyl ether, which resulted in the precipitation of a pale yellow solid. The product was filtered, washed with two 8-mL portions of diethyl ether, and dried under vacuum to give 0.39 g (2.40 mmol, 81.9%) of air-sensitive product. For 4: IR (KBr) 3057 (m), 3028 (m), 3007 (m), 2510 (vs), 2326 (w), 2198 (s), 1925 (w), 1854 (w), 1578 (s), 1479 (vs), 1415 (m), 1294 (m), 1223 (m), 1188 (s), 1138 (s), 1053 (s), 989 (s), 947 (m), 897 (w), 798 (m), 712 (w), 506 (w), 482 cm⁻¹ (w). Anal. Calcd: C, 46.22; H, 9.41; N, 11.99. Found: C, 44.97; H, 11.06; N, 11.43.

Acidification of arachno-6-(NCCH=CH)-6,8-C₂B₇H₁₁-with DCl. A 0.31-g (2.91 mmol) sample of arachno-6,8-C₂B₇H₁₃, 0.07 g (2.92 mmol) of NaH, and 30 mL of THF were used to generate arachno-6,8-C₂B₇H₁₂- as described above. After the solution was filtered into another flask under N₂, a cyanoacetylene/THF solution (5.3 mL, 0.56 M, 2.97 mmol) was added dropwise at room temperature. The solution was allowed to stir for 1 h. The flask was then attached to the vacuum line and 3.14 mmol of gaseous DCl, which had been measured in a calibrated volume, was condensed into the reaction flask at -196 °C. The mixture was slowly warmed to room temperature and stirred for 1 h. The THF solvent was then vacuum evaporated and replaced with 20 mL of diethyl ether. After filtration through a layer of silica gel, vacuum evaporation of the solvent gave 0.30 g (1.82 mmol, 62.5%) of light-yellow crude product. Sublimation at 50 °C give 0.21 g of white solid.

PPN⁺ hypho-1-(NCCH₂)-1,2,5-C₃B₆H₁₂⁻ (5). A 0.30-g (1.83 mmol) sample of arachno-6-(NCCH₂)-5,6,7-C₃B₇H₁₂ was dissolved in 20 mL of methylene chloride in a 100-mL flask. An aqueous 37% NH₄OH (3 mL) solution was then added. After the mixture was stirred at room temperature for 23 min, its ¹¹B NMR spectrum showed complete conversion to the product. At this point, 1.05 g (1.83 mmol) of PPN+Clwas added and the solution stirred for 15 min. The CH₂Cl₂ solution was then separated from the water and washed with an additional 15 mL of H₂O. After 10 mL of diethyl ether was added to the CH_2Cl_2 solution, heptane was added dropwise until the solution became slightly cloudy. Evaporation of the solvents under argon resulted in the crystallization of 0.80 g (1.16 mmol, 63.4%) of 5. For 5: IR (KBr) 3057 (m), 2957 (s), 2929 (s), 2820 (m), 2545 (s), 2496 (vs), 2234 (m), 1975 (m), 1904 (w), 1826 (m), 1590 (m), 1580 (s), 1436 (vs), 1287 (vs), 1188 (m), 1167 (vs), 1025 (m), 998 (m), 970 (m), 918 (m), 890 (m), 797 (m), 748 (s), 726 (vs), 691 (vs), 549 (vs), 528 (vs), 499 cm⁻¹ (vs). Anal. Calcd: C, 71.22; H, 6.37; N, 4.06. Found: C, 70.70; H, 6.41; N, 3.85. The Me₄N⁺ salt was made by exchanging the NH_4^+ cation with $Me_4N^+Cl^-$.

arachno-8-(CH₃OC(O))-7,8,9,10-C₄B₈H₁₃ (6). A 100-mL roundbottomed flask fitted with a vacuum stopcock was charged with 0.95 g (7.76 mmol) of *nido*-5,6-C₂B₈H₁₂ and 0.33 g (13.75 mmol) of NaH. THF (40 mL) was then vacuum distilled into the flask at -196 °C and

the mixture was allowed to warm to room temperature. After gas evolution ceased (~20 min), the solution containing *nido*-5,6-C₂B₈H₁₁⁻ was filtered into another 100-mL two-neck flask under a N₂ atmosphere. A 0.66-g (7.85 mmol) sample of methyl propiolate was dropped into the stirred solution at 0 °C. The mixture was then stirred at room temperature for ~ 1.5 h. The solution was next acidified with HCl-diethyl ether solution (8.2 mL, 1 M) at -78 °C and slowly warmed to room temperature. The THF was then vacuum evaporated and the residue extracted with 40 mL of pentane. The solution was filtered through a layer of silica gel and the filtrate concentrated. Crystallization by slow cooling to -20 °C afforded 0.92 g (4.45 mmol, 57.3%) of a crude product. Recrystallization from cold pentane produced 0.70 g of a white, crystalline solid. For 6: mp 67-68 °C; $R_f = 0.40$ in CH₂Cl₂/pentane (v/v 1:2); IR (KBr) 3070 (s), 2975 (m), 2900 (m), 2858 (m), 2602 (vs), 2560 (vs), 2518 (s), 1719 (s), 1436 (s), 1329 (m), 1258 (s), 1230 (s), 1099 (m), 1042 (m), 992 (m), 914 (m), 779 (m), 751 (w), 716 (w), 673 (w), 588 cm⁻¹ (w). Anal. Calcd: C, 34.87; H, 7.74. Found: C, 35.70; H, 7.74. Exact mass calcd for ${}^{12}C_6{}^{11}B_8{}^{16}O^1H_{16}$ 208.1895, found 208.1907.

 PPN^+ arachno-8-(NC)-7,8-C₂B₁₀H₁₄-(7). A 100-mL round-bottomed flask fitted with a vacuum stopcock was charged with 1.00 g (8.19 mmol) of nido-B₁₀H₁₄ and 0.43 g (10.75 mmol) of KH. THF (30 mL) was vacuum distilled into the flask at -196 °C and the mixture was warmed to room temperature. After gas evolution ceased (\sim 30 min), the yellow solution containing nido-B10H13⁻ was immediately filtered into another 100-mL two-neck flask under a N2 atmosphere. A cyanoacetylene/ THF solution (19.5 mL, 0.44 mmol/mL) was then added to the mixture at 0 °C. After the reaction mixture was stirred for 14 h at 0 °C, 4.86 g (8.47 mmol) of PPN+Cl- was added and the solution was stirred at room temperature for an additional hour. The THF was then vacuum evaporated and 20 mL of CH₂Cl₂ was added. After filtration of the solution, \sim 20 mL of diethyl ether was added and the solution was filtered again. At this point, heptane was slowly added to the filtrate with stirring until small needles appeared. Slow evaporation of the remaining solvent afforded 5.07 g (7.13 mmol, 87.1%) of crystalline PPN+arachno-8-(NC)-7,8-C₂B₁₀H₁₄-. For 7: IR (KBr) 3085 (m), 3056 (m), 2929 (m), 2886 (w), 2830 (m), 2532 (vs), 2205 (s), 1968 (w), 1904 (w), 1819 (w), 1776 (w), 1670 (w), 1585 (s), 1486 (s), 1436 (s), 1379 (vs), 1308 (s), 1189 (s), 1117 (s), 996 (s), 748 (s), 719 (vs), 691 (vs), 535 (vs), 499 cm⁻¹ (s). Anal. Calcd: C, 65.84; H, 6.19; N, 3.94. Found: C, 66.11; H, 5.92; N, 3.63.

PPN+nido-7-(CH₃C(O))-7,8-C₂B₉H₁₁⁻ (8). A 100-mL round-bottomed flask fitted with a vacuum stopcock was charged with 0.44g (11.00 mmol) of KH and 30 mL of THF. A 1.04-g (8.52 mmol) sample of nido-B10H14 dissolved in 8 mL of THF was added dropwise. After gas evolution ceased ($\sim 20 \text{ min}$), the yellow solution containing *nido*-B₁₀H₁₃⁻ was filtered into another 100-mL flask under a N2 atmosphere. A 1.16-g (17.00 mmol) sample of 3-butyn-2-one was added via syringe at room temperature. The reaction was very exothermic, causing the THF to reflux. After the mixture was stirred for 40 min, 4.89 g (8.52 mmol) of PPN+Cl- was added and the solution was stirred for an additional hour. The solvent was then vacuum evaporated and 20 mL of CH₂Cl₂ was added. After filtration, $\sim 20 \,\text{mL}$ of diethyl ether was added to the solution and the solution was filtered again. Heptane was then added dropwise to the stirred filtrate until the onset of crystallization was observed. Slow evaporation of the solvent afforded 4.57 g (6.41 mmol, 75.2%) of crystalline PPN+nido-7-(CH₃C(O))-7,8-C₂B₉H₁₁⁻. For 8: IR (KBr) 3049 (m), 3021 (m), 2525 (vs), 2042 (w), 1979 (w), 1908 (w), 1882 (w), 1780 (w), 1666 (s), 1589 (m), 1482 (s), 1439 (s), 1354 (s), 1255 (vs), 1191 (s), 1113 (s), 1028 (m), 1000 (s), 801 (m), 744 (s), 723 (s), 695 (s), 553 (s), 532 (s), 496 cm⁻¹ (s). Anal. Calcd: C, 67.22; H, 6.16; N, 1.96. Found: C, 66.93; H, 6.16; N, 1.91.

 Me_4N^+nido -7-(CH₃OC(O))-7,8-C₂B₉H₁₁⁻ (9). A 100-mL roundbottomed flask fitted with a vacuum stopcock was charged with 0.44 g (10.00 mmol) of KH and 30 mL of THF. A 1.04-g (8.52 mmol) sample of *nido*-B₁₀H₁₄ dissolved in 15 mL of THF was added dropwise. After gas evolution ceased (~20 min), the yellow solution containing *nido*-B₁₀H₁₃⁻ was filtered into another 100-mL flask under a N₂ atmosphere. A 1.43-g (17.0 mmol) sample of methyl propiolate was added via syringe. After the solution was heated at reflux for 2 h, the solvent was vacuum evaporated and the residue was dissolved in 20 mL of H₂O. Addition of 1.10 g (10.05 mmol) of Me₄N+Cl⁻ in 5 mL of H₂O resulted in a light-yellow precipitate. The precipitate was washed with two 5-mL portions of H₂O and dried in vacuo, which afforded 1.60 g (6.42 mmol, 75.4%) of product. For 9: IR (KBr) 3042 (m), 2950 (m), 2532 (vs), 1708 (vs), 1481 (vs), 1436 (s), 1290 (vs), 1213 (s), 1078 (s), 1021 (s), 946 (s), 812 (m), 776 (m), 723 cm⁻¹ (m). Anal. Calcd: C, 36.19; H, 9.80; N, 5.28. Found: C, 33.98; H, 9.49; N, 4.71.

arachno-[endo-4-(NCCH=CH)]-6,8-S2B7H8- (10). A solution of $Na^{+}6,8$ - $S_2B_7H_9^{-}$ was prepared by the reaction of 0.23 g (1.55 mmol) of arachno-6,8-S2B7H9 and 0.15 g (6.25 mmol) of NaH in 20 mL of THF, as previously described.⁴ After initial gas evolution ceased (about 1 h), the anion solution was filtered into another 100-mL two-neck flask under a N_2 atmosphere. To this stirred solution was added 0.20 g (3.92 mmol) of cyanoacetylene dissolved in 9 mL of THF over ~ 15 min, and the combined solution was then allowed to stir for 1 h at room temperature. At this point, the ¹¹B NMR spectrum showed quantitative conversion to the product. A 0.18-g (1.64 mmol) sample of $Me_4N^+Cl^-$ was then added to the reaction solution. After being stirred for 1 h, the reaction mixture was filtered. The addition of 20 mL of hexane to the filtrate resulted in the precipitation of a yellow solid. The product was filtered and washed with two 5-mL portions of hexane. Further vacuum drying overnight gave 0.29 g (1.06 mmol, 68.4%) of product. For 10: IR (KBr) 3075 (w), 2964 (w), 2567 (vs), 2510 (vs), 2411 (s), 2198 (vs), 1528 (m), 1486 (vs), 1450 (w), 1358 (w), 1262 (w), 1046 (m), 1018 (m), 705 (m), 684 (m), 634 (w), 584 (w), 482 cm⁻¹ (w). Anal. Calcd: C, 30.38; H, 8.03; N, 10.23. Found: C, 30.45; H, 7.39; N, 9.95.

Acidification of arachno-[endo-4-(NCCH=CH)]-6,8-S₂B₇H₈-. A 0.20-g (0.27 mmol) sample of the PPN⁺ salt of arachno-[endo-4-(NCCH=CH)]-6,8-S₂B₇H₈⁻ was charged into a 100-mL round-bottomed flask equipped with a vacuum stopcock. The flask was connected to the vacuum line and 15 mL of CH₂Cl₂ was vacuum distilled into the flask. A slight excess of gaseous HCl (0.30 mmol) was then condensed into the flask at -196 °C, and the mixture was slowly warmed to -78 °C. Vigorous gas evolution was observed, and the ¹¹B NMR spectrum taken after 1 h showed only decomposition products.

Crystallographic Data for Compounds 2 and 5-8. Single crystals of 2 and 6 were grown by slowly cooling saturated pentane solutions to 0 °C. Single crystals of 5, 7, and 8 were grown by slow evaporation of $CH_2Cl_2/diethyl ether/heptane solutions under Ar$. Suitably sized crystals were placed inside capillary tubes which were then sealed with glue.

Collection and Reduction of the Data. X-ray intensity data were collected at 295 K on an Enraf-Nonius CAD-4 diffractometer employing graphite-monochromated Cu K α radiation ($\lambda = 1.54184$ Å) with use of the $\omega-2\theta$ scan technique. For each compound three standard reflections measured every 3500 s of X-ray exposure showed less than 10% intensity decay over the course of data collection. A linear decay correction was applied. The intensity data were corrected for Lorentz and polarization effects, but not for absorption.

Solution and Refinement of the Structure. All calculations were performed on a DEC MicroVAX 3100 computer using the Enraf-Nonius Molen structure package. The full-matrix least-squares refinement was phased on F, and the function minimized was $\sum w(|F_0| - |F_c|)^2$. The weights (w) were taken as $4F_0^2/(\sigma(F_0^2))^2$ where $|F_0|$ and $|F_c|$ are the observed and calculated structure factor amplitudes. The neutral-atom scattering factors and complex anomalous dispersion corrections are those stored in the SDP package. Agreement factors are defined as $R = \sum ||F_0|$ - $|F_{\rm c}|/\Sigma|F_{\rm o}|$ and $Rw = (\Sigma w(|F_{\rm o}| - |F_{\rm c}|)^2/\Sigma w|F_{\rm o}|^2)^{1/2}$. The structures were solved by direct methods (MULTAN 11/82). Subsequent Fourier maps led to the locations of all non-hydrogen atoms. Anisotropic refinements followed by difference Fourier syntheses resulted in the location of all cage hydrogens, except the bridge hydrogens in 7. The positions of the remaining hydrogens and the bridge-hydrogens in 7 were then calculated. Hydrogen atoms were not refined, but were included as constant contributions to the structure factors. The final refinements included anisotropic thermal parameters for non-hydrogen atoms and fixed isotropic thermal parameters for the hydrogen atoms (6 $Å^2$). Final difference Fouriers were featureless.

The cage atoms in 8 were disordered by rotation about the C7-C12 bond. This resulted in a boron atom occupancy of 20% in the 12-position (B12) and 80% in the 3-position (B3). Similarly, the atom in the 8-position (CB8) was 80% C and 20% B, and the atom in the 11-position (BC11) was 20% C and 80% B.

Crystal and refinement data are given in Table II. Final positional parameters are given in Tables III-VII. Selected intramolecular bond distances are presented in Tables VIII-XII.

Results

Monocarbon Insertions: New Tricarbaboranes. arachno-6-(RCH₂)-5,6,7-C₃B₇H₁₂, where R = CN(1), C(O)Me(2), or C(O)-OMe (3). The arachno-6,8-C₂B₇H₁₂⁻ anion reacted with cyanoacetylene, methyl propiolate or 3-butyn-2-one in THF solution

Table I.	NMR	Data
		-

compounds	nucleus	δ (multiplicity, assignment, J (Hz))
arachno-6-(NCCH ₂)-5,6,7-	11BdJ	10.7 (d, B2, J_{BH} 184), -3.8 (d of d, B8,10, J_{BH} 149, $J_{BH(br)}$ 26), -25.4 (d, B1,3, J_{BH} [67), -26.8 (d, B9, $J_{BH} \sim 200)$, -41.0 (d, B4, J_{BH} [51)
C3D/11/2, 1	11B_11Bas 13Cbs	crosspeaks: $B2-B1, 3; B8, 10-B1, 3; B8, 10-B9; B8, 10-B4; B1, 3-B4; B9-B4$ 116.7 (s, C12), 39.2 (d, C6, J_{CH} 170), 27.1 (t, CH ₂ , J_{CH} 137), 11.5 (d, C5.7 J_{CV} 170)
	¹ H(¹¹ B)¢√	4.05 (B2H or B4H), 2.90 (B1,3H or B8,10H), 2.82 (d, CH ₂ , J_{HH} 7.0), 2.12 (t, B9H, $J_{HH(br)}$ 8.6), 1.98 (B1,3H or B8,10H), 1.34 (C5,7H), 0.19 (B2H or B4H) =0 11 (t, C6H, I_{wv} 7.0) =3 04 (BHB)
K ⁺ arachno-6-(NCCH ₂)-5,6,7-	11Bd.s	8.4 (d, 1, J_{BH} 182), -3.5 (d, 2, J_{BH} 131), -25.7 (t, B, J_{BH} 88), -29.8 (d, 3, J_{BH} 144)
	¹ H ^c .s	2.87 (d, CH ₂ , $J_{\rm HH}$ 7.7), 0.67 (C5,7H, br), 0.31 (C6H, br), -3.06 (q, <i>endo</i> -B9H,
	¹ H(¹¹ B) ^{c,g,k}	3.88 (BH), 2.87 (d, CH ₂ , J_{BH} 7.1), 2.39 (BH), 1.51 (BH), 0.68 (C5,7H), 0.32 (m C6H br) $= 3.06$ (c, and c_{B9H})
arachno-6-(NCCDH)-5,6,7-	11Bas	$10.7 (d, B2, J_{BH} 188), -3.7 (d, B8, 10, J_{BH} 147), -25.1 (d, B1,3, J_{BH} 163), -26.1 (d, B9, J_{Constraint}) - 11 (d, B4, J_{Constraint}) - 26.1 (d, B9, J_{Constraint}) - 26.1 (d$
C3D711[2, 1-0]	¹³ C(¹ H) ^{b√} ¹ H(¹¹ B)¢√	116.7 (s, C12), 38.8 (s, C6), 26.6 (t, CDH, J_{CD} 21), 11.3 (m, C5,7, J_{CB} 29) 4.05 (B2H or B4H), 2.82 (d, CH ₂ , J_{HH} 7.0), 2.78 (B1,3H or B8,10H), 2.12 (t, B9H, $J_{HH(br)}$ 8.6), 1.97 (B1,3H or B8,10H), 1.34 (C5,7H), 0.18 (B2H or B4H) = 0.12 (d, C6H Leve 7.0) = 2.05 (BHB)
arachno-6-(MeOC(O)CH ₂)-5,6,7-	11Baj	$10.0 (d, B2, J_{BH} 187), -4.0 (d of d, B8,10, J_{BH} 149, J_{BH(br)} 34), -26.3 (d, B1,3, 1/2), -26.3 (d, B1,3), -26.3 (d, B1,3), -26.3 (d, B1,3), -26.$
C3B7H12, 2	13CbJ	J_{BH} 162), -27.2 (d, B3, J_{BH} doscured), -41.0 (d, B4, J_{BH} 146) 170.6 (s, C12), 51.8 (d, CH ₃ , J_{CH} 149), 42.7 (t, CH ₂ , J_{CH} 131), 39.0 (d, C6, I_{C} 164) 118 (d, C5, 7, 16)
	¹ H(¹¹ B)¢√	4.00 (B2H or B4H), 3.66 (s, CH ₃), 2.77 (d, CH ₂ , J_{HH} 6.6), 2.72 (B1,3H or B8, 10H), 1.94 (t, B9H, $J_{HH(bt)}$ 8.6), 1.83 (B1,3H or B8,10H), 1.23 (C5,7H), 0.16 (B2H or B4H) 0.00 (t, CEH, I_{uu} , 7.2) -3.05 (BHB)
arachno-6-(MeC(O)CH ₂)-5,6,7- C ₃ B ₇ H ₁₂ , 3	11Bas	9.5 (d, B2, J_{BH} 186), -4.0 (d of d, B8,10, J_{BH} 148, $J_{BH(br)}$ 31), -26.8 (d, B1,3, J_{BH} 162), -27.5 (d, B9, J_{BH} 05scured), -41.1 (d, B4, J_{BH} 147)
	13C(1H)bJ 1H(11B)cJ	178.2 (C12), 51.9 (CH ₃), 37.7 (C6), 29.5 (CH ₂), 11.8 (C5,7) 3.93 (B2H or B4H), 2.92 (d, CH ₂ , J_{HH} 6.6), 2.73 (B1,3H or B8,10H), 2.10 (s, CH ₃), 1.94 (m, B9H, J_{HH0p} 7.0), 1.80 (B1,3H or B8,10H), 1.14 (C5,7H), 0.14 (B2H or B4H) 0.05 (t C5H J_{HH} 6.6) -3.05 (BHB)
Me ₄ N+arachno-6-(NCCH=CH)- 6.8-C-B-Hu-4	11Bas	8.6 (d, J_{BH} 110), 1.2 (d, J_{BH} 140), -8.4 (d, J_{BH} 134), -16.9 (d of d, J_{BH} 140, $J_{BH}(x_{2}, 30)$ -36.4 (d, J_{BH} 135) -42.4 (d, J_{BH} 134), -16.9 (d of d, J_{BH} 140,
0,0 0,22/11/1 , T	¹ H(¹¹ B) ^{c,f,h}	4.71 (m, vinyl CH's), 3.64 (BH), 3.29 (Me ₄ N ⁺), 2.90 (BH), 2.74 (m, br, cage- CH), 2.48 (BH), 2.08 (BH), 1.42 (m, br, cage CH), 0.56 (BH), -0.06 (BH), -4.23 (BHB)
PPN+hypho-1-(NCCH ₂)-1,2,5- C ₁ B ₄ H ₁₂ -, 5	11BdJ	-6.6 (d, B7,9, J_{BH} 112), -30.4 (d, B8, J_{BH} 151), -32.1 (d, B10,11, J_{BH} 122), -51.2 (d, B12, J_{BH} 133)
- 3 - 0 - 12 , -	11B_11Bas 13Ces	crosspeaks: B12-B10,11; B12-B8; B12-B7,9; B8-B7,9; B7,9-B12 121.0 (m, C14), 42.6 (d, C1, J _{CH} 133), 25.9 (t, C13, J _{CH} 133), 17.4 (d, C2,5, J _{CH} 145)
	¹ H(¹¹ B)¢√	2.08 (B7,9H), 1.75 (d, C13H, J_{HH} 6.6), 1.55 (m, B8H, $J_{HH(br)}$ 7.1), 0.82 (d, B10,11H, $J_{HH(br)}$ 8.80), 0.66 (t, C1H, J_{HH} 7.0), 0.48 (s, C2,5H), -1.06 (B12H), -2.53 (2, BHB (B7,9-B8)), -3.01 (t, 1, BHB (B10-B11), J_{HH} 11.8)
arachno-8-(CH ₃ OC(O))-7,8,9,10- C ₄ B ₈ H ₁₃ , 6	11 B dJ	46.8 (d, J_{BH} 175), 13.6 (d, J_{BH} 162), -10.2 (d, J_{BH} 175), -20.5 (d, J_{BH} 146), -21.9 (d, J_{BH} 169), -26.0 (d of d, J_{BH} 140, $J_{BH(br)}$ 64), -27.4 (d, J_{BH} 150), -40.1 (d, J_{BH} 153)
	13Cev	171.4 (CA), 55.5 (q, CH ₃ , J _{CH} 148), 38.8 (d, C9 or C10, J _{CH} 176), 30.5 (s, C8), 18.8 (d, C9 or C10, J _{CH} 159), -20.4 (t, C7, J _{CH} 155)
	¹ H(¹¹ B)¢√	5.70 (BH), 4.05 (BH), 3.76 (CH ₃), 3.40 (m, cage-CH), 2.88 (BH), 2.22 (BH), 2.07 (m, cage-CH), 1.58 (BH), 1.47 (d, exo-C7H, J _{HH} 15.4), 1.06 (t, endo- C7H, J _{HH} 12), 0.95 (BH), 0.69 (BH), -0.93 (m, BHB)
PPN+ <i>arachno</i> -8-(NC)-7,8- C ₂ B ₁₀ H ₁₄ -, 7	llBdJ	28.0 (d, 1, J_{BH} 156), 16.5 (d, 1, J_{BH} 143), -6.2 (d, 2, J_{BH} 144), -8.8 (d, 1, J_{BH} 135), -21.3 (d, 1, J_{BH} 130), -23.4 (d, 1, J_{BH} 140), -25.0 (d, 1, J_{BH} 147), -31.3 (d, 1, J_{BH} 157), -32.3 (d, 1, J_{BH} 144)
	¹³ C•√ ¹ H(¹¹ B)	128.3 (CA), 3.37 (s, C8), -4.59 (t, C7, J _{CH} 137) 4.66 (BH), 3.68 (BH), 2.51 (B12H), 2.31 (BH), 2.13 (BH), 1.29 (2, BH), 1.14 (d of d, exo-C7H), 0.93 (BH), 0.68 (d of d, endo-C7H), 0.52 (BH), 0.26 (BH), -1.93 (BHB, B11-B12), -3.95 (BHB, B9-B10)
PPN+nido-7-(MeC(O))-7,8- C ₂ B ₉ H ₁₁ ⁻ , 8	11 B ₫√	-7.3 (d, J_{BH} 138), -7.5 (d, J_{BH} 138), -11.7 (d, $J_{BH} \sim 167$), -12.7 (d, J_{BH} 142), -17.1 (d, J_{BH} 143), -18.5 (d, J_{BH} 156), -22.3 (d, J_{BH} 148), -31.2 (d of d, J_{BH} 124, $J_{BH(m)}$ 36), -33.7 (d, J_{BH} 139)
	13Cev	210.5 (s, C12), 66.7 (m, C7, J _{CB} 48), 40.8 (d of m, C8, J _{CH} 162, J _{CB} 48), 26.7 (g, CH ₁ , J _{CH} 128, J _{CB} 50)
	¹ H(¹¹ B) ^{c√}	2.57 (C8H), 2.34 (BH), 2.09 (BH), 2.07 (CH ₃), 1.81 (BH), 1.63 (BH), 1.41 (BH), 1.30 (BH), 1.17 (BH), 0.72 (BH), 0.17 (BH), -2.66 (BHB, (B9-10))
TMA ⁺ nido-7-(MeOC(O))-7,8- C ₂ B ₉ H ₁₁ -, 9	¹¹ BdJ	-7.8 (d, 2, J_{BH} 135), -12.8 (d, 2, J_{BH} 119), -17.9 (d, 2, J_{BH} 140), -22.6 (d, 1, J_{BH} 148), -31.0 (d of d, 1, J_{BH} 131, J_{BHbr} 41), -34.4 (d, 1, J_{BH} 140)
/	13Cef	172.2 (s, C12), 56.0 (q, Me ₄ N ⁺ , J _{CH} 148), 55.7 (s, C7), 51.7 (q, CH ₃ , J _{CH} 147), 42.7 (d, C8, J _{CH} 170)
	¹ H(¹¹ B)¢√	3.57 (CH ₃), 3.27 (Me ₄ N ⁺), 2.47 (C8H), 2.22 (BH), 2.09 (BH), 1.91 (BH), 1.57 (BH), 1.37 (BH), 1.16 (2, BH), 0.64 (BH), 0.15 (BH), -2.66 (BHB, (B9-10))
arachno-[endo-4-(NCCH=CH)]- 6,8-S ₂ B ₇ H ₈ -, 10	11BaJ	11.5 (d, B5,9, J _{BH} 148), 0.2 (d, B7, J _{BH} 156), -7.1 (d, B1, J _{BH} 133), -28.6 (d, B2,3, J _{BH} 168), -38.0 (d, B4, J _{BH} 108)
	11B_11Baj 13Cej	crosspeaks: B5,9-B1; B5,9-B2,3; B5,9-B4; B1-B2,3; B1-B4 189.5 (d of q, C1, J _{CB} 62, J _{CH} ~115), 122.8 (s, C3), 92.0 (d, C2, J _{CH} 167) 56.2 (q, NMe ₄ ⁺ , J _{CH} 154)
	¹³ C(¹ H, −85°) ^b ∫ ¹ H(¹¹ B)¢∫	190.0 (s, C1), 123.3 (s, C3), 92.9 (s, C2), 56.3 (Me ₄ N ⁺) 5.70 (m, CH), 4.87 (m, CH), 3.48 (B5,9H and B7H), 3.29 (Me ₄ N ⁺), 2.50 (B1H), 1.65 (B2,3H), 0.77 (B4H)

^a 64.2 MHz. ^b 50.3 MHz. ^c 200.1 MHz. ^d 160.5 MHz. ^e 125.7 MHz. ^f CD₂Cl₂. ^g THF-d₈. ^h Not all terminal BH's were observed.

Table II. Crystallographic Data Collection and Structure Refinement Information

	2	5	6	7	8
space group	Pbca	$P2_{1}/c$	PĪ	PĪ	$P2_1/n$
Ž	8	4	2	2	4
cell constants					
a, Å	11.059(1)	10.614(1)	7.263(2)	12.260(2)	10.142(1)
b, Å	10.820(1)	10.938(1)	7.632(1)	12.266(2)	21.953(3)
c, Å	19.348(3)	13.974(2)	10.823(4)	14.824(2)	18.527(3)
α , deg			98.98(2)	110.59(1)	
β , deg		108.88(1)	98.37(3)	105.35(1)	103.30(1)
γ , deg			92.88(2)	93.41(2)	
$V, Å^3$	2315.1(8)	1535.1(6)	584.7(6)	1983(1)	4014(2)
$\mu, {\rm cm}^{-1}$	4.74	3.48	4.82	12.08	12.11
$D_{\rm calc}, {\rm g/cm^3}$	1.130	0.983	1.174	1.190	1.181
F(000)	832	496	216	744	1496
radiation, λ, Å	Cu Kα (1.54184)	Cu Kα (1.54184)	Cu Ka (1.54184)	Cu Kα (1.54184)	Cu Kα (1.54184)
θ range, deg	2.0-65.0	2.0-65.0	2.0-65.0	2.0-65.0	2.0-65.0
scan mode	$\omega - 2\theta$	$\omega - 2\theta$	$\omega - 2\theta$	$\omega - 2\theta$	$\omega - 2\theta$
h, k, l collected	+12, +12, +22	±12, -12, +16	±8, ±8, -12	$\pm 14, \pm 14, \pm 17$	$\pm 11, \pm 25, \pm 21$
no. of reflecns measured	2267	2885	2107	7107	7446
no. of unique reflecns	1767	2607	1990	6756	6807
no. with $F_0^2 > 3.0\sigma(F_0)$	1217	1867	1206	4322	5498
no. of parameters	204	238	210	478	531
R_1	0.054	0.069	0.064	0.053	0.046
R ₂	0.061	0.098	0.074	0.067	0.067

Table III	. Refined	Positional	Parameters	for
arachno-	6-(MeOC(C))CH ₂)-5,	6,7-C3B7H12,	2

atom	x	У	Z	$B_{eq},^{a}$ Å ²
B 1	1.0188(3)	0.1163(4)	0.7226(2)	5.16(8)
B2	0.9278(3)	0.2369(3)	0.7072(2)	5.07(8)
B3 [·]	1.0760(3)	0.2510(3)	0.6901(2)	5.00(7)
B4	1.1381(3)	0.1092(3)	0.6624(2)	4.67(7)
B 8	1.1009(3)	0.2272(3)	0.5994(2)	4.78(8)
B9	1.0993(3)	0.0625(4)	0.5809(2)	5.03(8)
B 10	1.0078(3)	0.0089(3)	0.6529(2)	4.76(7)
C5	0.8927(2)	0.0959(3)	0.6736(1)	4.21(6)
C6	0.8688(2)	0.1903(2)	0.6135(1)	3.62(5)
C7	0.9737(2)	0.2848(2)	0.6272(2)	4.47(6)
C11	0.7435(2)	0.2480(3)	0.6108(2)	4.64(6)
C12	0.6485(2)	0.1595(2)	0.5872(1)	3.79(5)
C15	0.4394(2)	0.1410(3)	0.5626(2)	6.04(8)
013	0.6631(2)	0.0512(2)	0.5770(1)	5.24(5)
O14	0.5437(1)	0.2167(2)	0.5795(1)	4.96(4)
H 1	1.020(2)	0.075(2)	0.773(1)	7.8(8)*
H2	0.865(2)	0.291(2)	0.741(1)	6.6(7)*
H3	1.127(2)	0.327(2)	0.713(1)	6.9(7)*
H4	1.231(2)	0.085(2)	0.677(1)	5.5(6)*
H5	0.823(2)	0.062(2)	0.693(1)	5.7(6)*
H6	0.884(2)	0.152(2)	0.569(1)	3.2(5)*
H7	0.956(2)	0.363(2)	0.615(1)	5.6(6)*
H8	1.175(2)	0.284(2)	0.576(1)	6.1(6)*
H9	1.163(2)	0.009(2)	0.553(1)	5.5(6)*
H10	1.010(2)	-0.086(2)	0.668(1)	6.5(6)*
H89	1.060(2)	0.147(2)	0.548(1)	7.0(7)*
H910	1.002(2)	0.009(2)	0.582(1)	5.2(6)*
Hila	0.746(2)	0.313(2)	0.578(1)	6.1(7)*
HIID	0.722(2)	0.284(2)	0.655(1)	6.8(7)*
H15a	0.454(3)	0.103(3)	0.517(2)	11.0(1)*
H15b	0.424(3)	0.078(3)	0.603(2)	10.0(1)*
H15c	0.380(3)	0.201(3)	0.562(2)	10.1(9)*

^a Entries with an asterisk were refined isotropically. $B_{eq} = \frac{4}{3}[\beta_{11}a^2 + \beta_{22}b^2 + \beta_{33}c^2 + \beta_{12}ab\cos\gamma + \beta_{13}ac\cos\beta + \beta_{23}bc\cos\alpha].$

to yield, following protonation, a series of new tricarbaboranes of general formula arachno-6- (RCH_2) -5,6,7- $C_3B_7H_{12}$.

arachno-6,8-C₂B₇H₁₂ + HC=CR
$$\xrightarrow{(1) \times 1}_{(2) \times 1}$$

 $arachno-6-(RCH_2)-5,6,7-C_3B_7H_{12}$ (3)

R = CN(1), C(O)OMe(2), or C(O)Me(3)

According to the ¹¹B NMR spectra of the reaction mixtures, the tricarbaboranes were the sole products. The compounds were isolated as slightly air-sensitive white crystalline solids in yields

Table I'	V. Refir	ned Positio	onal Para	meters	for
Me₄N+/	hypho-1-	(NCCH ₂)	-1,2,5-C	B6H12-	5

atom	x	у	Z	B_{eq} , ^a Å ²
B 7	-0.1163(3)	0.3097(3)	0.0329(2)	5.27(7)
B8	-0.1752(4)	0.2252(4)	-0.0827(2)	6.62(9)
B9	-0.2280(3)	0.0848(3)	-0.0447(3)	6.37(8)
B 10	-0.2832(3)	0.1119(3)	0.0733(3)	5.72(8)
B 11	-0.2106(3)	0.2569(3)	0.1219(2)	4.95(7)
B 12	-0.2834(3)	0.2354(3)	-0.0130(2)	5.23(7)
C1	-0.0311(2)	0.1023(2)	0.1273(2)	4.36(5)
C2	-0.0584(2)	0.2389(2)	0.1337(2)	4.20(5)
C5	-0.1596(3)	0.0362(2)	0.0653(2)	5.70(7)
C13	0.0220(3)	0.0464(3)	0.2338(2)	5.71(6)
C14	0.1491(3)	0.0982(3)	0.2920(2)	6.27(7)
N15	0.2499(3)	0.1391(3)	0.3340(2)	8.97(8)
N16	0.3783(2)	0.1428(2)	0.6509(1)	4.52(4)
C17	0.4423(4)	0.0642(4)	0.5959(3)	10.6(1)
C18	0.4580(5)	0.2476(5)	0.6970(5)	10.2(2)
C19	0.2478(5)	0.1828(7)	0.5887(5)	13.1(2)
C20	0.3562(7)	0.0752(7)	0.7354(5)	13.7(2)
C18′	0.259(1)	0.090(1)	0.661(1)	9.9(4)
C19′	0.369(2)	0.260(1)	0.596(1)	13.0(6)
C20′	0.463(2)	0.159(2)	0.747(1)	12.0(5)
H 1	0.044(2)	0.089(2)	0.100(2)	5.1(5)
H2	0.005(2)	0.274(2)	0.179(1)	4.8(5)
H5	-0.151(3)	-0.041(3)	0.080(2)	9.1(8)
H7	-0.106(2)	0.407(3)	0.024(2)	7.7(7)
H8	-0.238(3)	0.267(3)	-0.168(2)	11.0(9)
H9	-0.299(4)	0.026(3)	-0.109(3)	14(1)
H10	-0.384(2)	0.081(2)	0.063(2)	6.7(6)
H11	-0.255(3)	0.333(3)	0.155(2)	9.0(8)
H12	-0.378(3)	0.279(3)	-0.051(2)	8.4(7)
H78	-0.074(2)	0.255(2)	-0.044(2)	6.3(6)
H89	-0.126(2)	0.124(2)	-0.084(2)	7.4(7)
H1011	-0.248(2)	0.161(2)	0.162(2)	5.6(6)
H13a	-0.041(2)	0.060(2)	0.270(2)	7.1(6)
H13b	0.031(3)	-0.042(3)	0.228(2)	8.7(8)

 $\frac{1}{a} B_{eq} = \frac{4}{3} [\beta_{11} 4a^2 + \beta_{22}b^2 + \beta_{33}c^2 + \beta_{12}ab\cos\gamma + \beta_{13}ac\cos\beta + \beta_{23}bc\cos\gamma + \beta_{2$

ranging from 51 to 82%. The ester and ketone derivatives are readily soluble in hydrocarbons and can be purified by recrystallization from pentane. The cyano derivative has limited solubility in pentane, but it is volatile and can be purified by slow sublimation at elevated temperatures.

The compositions of the tricarbaboranes were initially established by both elemental analyses and exact mass measurements. All three compounds exhibited intense cutoff envelopes consistent with their formulations.

We reported the structural confirmation of 1 in an earlier

Table V. Refined Positional Parameters for arachno-8-(CH₃OC(O))-7,8,9,10-C₄B₈H₁₃, 6

atom	x	У	Z	B_{eq} , ^a Å ²
B1	0.1344(7)	0.0664(5)	0.1969(5)	5.3(1)
B2	0.0850(6)	0.2524(6)	0.1288(4)	4.9(1)
B3	0.3038(6)	0.2448(6)	0.2259(4)	4.9(1)
B4	0.2525(7)	0.1325(6)	0.3495(5)	6.0(1)
B5	0.0171(7)	0.0717(6)	0.3247(5)	5.7(1)
B6	-0.0916(7)	0.1430(6)	0.1893(4)	5.5(1)
B 11	-0.1107(7)	0.2595(6)	0.3451(5)	6.2(1)
B12	-0.1139(7)	0.3788(6)	0.2037(5)	6.1(1)
C7	0.0530(6)	0.5302(5)	0.2209(4)	5.6(1)
C8	0.2378(5)	0.4517(4)	0.2627(3)	4.27(8)
C9	0.2606(5)	0.3612(5)	0.3757(3)	5.09(9)
C10	0.1004(6)	0.2621(5)	0.4205(3)	5.7(1)
CA	0.4055(5)	0.5716(4)	0.2582(3)	4.82(9)
СВ	0.5429(6)	0.7569(5)	0.1334(4)	7.3(1)
OA	0.3934(4)	0.6289(3)	0.1471(2)	6.08(6)
OB	0.5333(4)	0.6151(4)	0.3418(3)	7.05(7)
HB1	0.157(5)	-0.051(4)	0.130(3)	6.8(9)*
HB2	0.089(5)	0.281(4)	0.030(3)	8(1)*
H B 3	0.443(4)	0.240(4)	0.200(3)	5.5(8)*
HB4	0.357(5)	0.076(5)	0.404(3)	9(1)*
HB5	-0.035(5)	-0.032(5)	0.365(3)	8(1)*
HB6	-0.215(5)	0.063(4)	0.123(3)	6.9(9)*
HB11	-0.232(5)	0.224(4)	0.385(3)	6.8(9)*
HB12	-0.244(5)	0.396(5)	0.156(3)	8(1)*
HB1112	-0.141(6)	0.412(5)	0.319(4)	10(1)*
H7a	0.043(4)	0.629(4)	0.293(3)	5.7(8)*
Н7Ъ	0.067(5)	0.559(5)	0.131(3)	10(1)*
H9	0.366(4)	0.414(4)	0.446(3)	5.5(8)*
H10	0.124(5)	0.281(4)	0.505(3)	7.1(9)*
HCBa	0.642(6)	0.713(5)	0.121(4)	11(1)*
НСВЪ	0.485(7)	0.797(7)	0.045(5)	16(2)*
HCBc	0.548(5)	0.852(4)	0.204(3)	8(1)

^a Entries with an asterisk were refined isotropically. $B_{eq} = \frac{4}{3}[\beta_{11}a^2 + \beta_{22}b^2 + \beta_{33}c^2 + \beta_{12}ab\cos\gamma + \beta_{13}ac\cos\beta + \beta_{23}bc\cos\alpha].$

Figure 1. ORTEP drawing of the structure of arachno-6-(MeO(O)-CH₂)-5,6,7-C₃ B_7H_{12} , 2.

communication.² A single-crystal X-ray study of *arachno*-6-(MeOC(O)CH₂)-5,6,7-C₃B₇H₁₂ (2), as shown in the ORTEP drawing in Figure 1, has confirmed that it adopts a similar cage structure. Consistent with their 26 skeletal-electron counts, 1 and 2 adopt cage geometries based on an icosahedron missing two vertices (Figure 2), similar to those which have been either confirmed or proposed for other 10-vertex *arachno* cage systems such as the borane, $B_{10}H_{14}^{2-,8}$ monocarbaborane 6-CB₉H₁₄^{-,9} and

Table	VI.	Refined	Positional	Parameters	for
PPN+	arach	no-8-(N	C)-7,8-C ₂ E	B ₁₀ H ₁₄ -, 7	

		2 - 10 14) ·		
atom	x	у	Z	$B_{eq},^{a}$ Å ²
B 1	1.0485(5)	0.3348(5)	0.6620(4)	7.4(2)
B2	0.9338(6)	0.3853(6)	0.6946(6)	9.0(2)
B 3	1.0219(6)	0.4749(5)	0.6700(4)	7.4(2)
B4	1.1624(4)	0.4563(5)	0.7202(4)	7.8(1)
B5	1.1558(4)	0.3464(4)	0.7677(4)	6.6(1)
B6	1.0141(5)	0.2968(4)	0.7561(4)	6.6(1)
B9	1.1138(5)	0.5808(4)	0.7909(4)	6.7(1)
B10	1.2001(5)	0.4903(5)	0.8476(5)	7.8(2)
B 11	1.1137(5)	0.3884(5)	0.8750(4)	7.6(2)
B12	0.9624(4)	0.4017(4)	0.8458(4)	6.7(1)
C7	0.9237(5)	0.5177(5)	0.8340(4)	11.0(2)
C8	0.9731(3)	0.5520(3)	0.7631(3)	5.6(1)
CA	0.9138(4)	0.6418(4)	0.7383(4)	7.1(1)
NI	0.8660(4)	0.7134(3)	0.7221(4)	9.5(1)
P 1	0.45202(7)	0.83470(7)	0.71549(6)	3.39(2)
P2	0.63530(7)	1.03659(7)	0.74117(6)	3.26(2)
C13	0.3166(3)	0.8804(3)	0.7211(2)	3.56(7)
C14	0.2132(3)	0.8028(3)	0.6691(3)	4.8(1)
CIS	0.1113(3)	0.8442(4)	0.6709(3)	6.3(1)
C16	0.1097(3)	0.9591(4)	0.7234(3)	6.2(1)
C17	0.2098(4)	1.0362(3)	0.7757(3)	6.1(1)
C18	0.3140(3)	0.9978(3)	0.7743(3)	4.84(9)
C19	0.4224(3)	0.7068(3)	0.6021(2)	3.61(8)
C20	0.3776(3)	0.5965(3)	0.5970(3)	5.0(1)
C21	0.3458(4)	0.5012(3)	0.5069(3)	6.1(1)
C22	0.3593(4)	0.5128(4)	0.4219(3)	6.4(1)
C23	0.4031(4)	0.6198(4)	0.4255(3)	6.1(1)
C24	0.4354(3)	0.7170(3)	0.5153(3)	4.49(9)
C25	0.5085(3)	0.7883(3)	0.8188(2)	3.58(8)
C20	0.0103(3)	0.7009(3)	0.8340(3)	4.8(1)
C_{2}^{\prime}	0.0043(4)	0.7241(3) 0.7144(4)	0.9131(3)	5.8(1)
C20	0.0023(4) 0.4031(4)	0.7144(4) 0.7202(4)	0.9740(3)	6.1(1)
C29 C20	0.4931(4) 0.4457(2)	0.7392(4) 0.7775(2)	0.9304(3)	0.1(1)
C30	0.4437(3) 0.7469(3)	1.0612(2)	0.0004(3)	4.0(1)
C31	0.7400(3) 0.7101(3)	1.0013(3) 1.0547(3)	0.0333(2) 0.0387(3)	3.34(0)
C32	0.7171(3)	1.0905(4)	1.0282(2)	4.70(9)
C34	0.0028(4)	1.0003(4) 1.1127(4)	1.0282(3) 1.0370(3)	6.5(1)
C35	0.9134(4) 0.9445(3)	1.1127(4) 1.1208(4)	0.9556(3)	6.0(1)
C36	0.9443(3)	1.1200(4) 1.0054(3)	0.9550(5) 0.8651(3)	4 66(9)
C37	0.3014(3)	1.0045(3)	0.6031(3) 0.6421(2)	$\frac{4.00(9)}{3.35(7)}$
C38	0.7011(3)	1.0858(3)	0.0421(2) 0.6009(2)	4 42(9)
C39	0.7276(4)	1.0586(4)	0.5275(3)	5 6(1)
C40	0.8141(3)	0.9521(4)	0.3273(3) 0.4967(3)	5.6(1)
C41	0.0111(3) 0.7947(3)	0.9521(4) 0.8714(4)	0.5386(3)	5.0(1)
C42	0.7381(3)	0.8968(3)	0.5500(3) 0.6102(3)	4 50(9)
C43	0.5830(3)	1.1743(3)	0.7583(2)	3.38(7)
C44	0.4769(3)	1.1757(3)	0.6965(3)	4.60(9)
C45	0.4338(3)	1.2802(3)	0.7132(3)	5.6(1)
C46	0.4946(4)	1.3828(3)	0.7898(3)	5.6(1)
C47	0.6005(4)	1.3832(3)	0.8494(3)	5.4(1)
C48	0.6455(3)	1.2792(3)	0.8350(3)	4,48(9)
N2	0.5347(2)	0.9349(2)	0.7143(2)	4.64(7)

 ${}^{a}B_{eq} = {}^{4}/{}_{3}[\beta_{11}a^{2} + \beta_{22}b^{2} + \beta_{33}c^{2} + \beta_{12}ab\cos\gamma + \beta_{13}ac\cos\beta + \beta_{23}bc\cos\gamma + \beta_{23}bc\cos\gamma$

dicarbaborane 6.9- $C_2B_8H_{14}^{10}$ analogues. The three carbons are adjacent in the 5,6,7-vertex positions on the puckered sixmembered open face, with the C6 carbons having both *endo*hydrogens and *exo* substituents (*exo*-MeOC(O)-, 2; *exo*-NCCH₂⁻, 1). Bridging hydrogen atoms are also present at the B8-B9 and B9-B10 edges.

Although their gross cage structures are consistent with skeletalelectron counting predictions, examination of the interatomic cage distances for both 1 and 2 reveals similar features that may be attributed to the hybrid organic-inorganic nature of the clusters. The C6-C5 (1.552(6) Å for 1 and 1.570(4) Å for 2) and C6-C7 (1.549(6) Å for 1 and 1.569(3) Å for 2) distances are longer than those normally observed between adjacent cage carbons, and are

⁽⁸⁾ Kendall, D. S.; Lipscomb, W. N. Inorg. Chem. 1973, 12, 546-551.
(9) Štíbr, B.; Jelinek, T.; Plešek, J.; Heřmánek, S. J. Chem. Soc., Chem. Commun. 1987, 963-964.

^{(10) (}a) Štíbr, B.; Plešek, J.; Heřmánek, S. Collect. Czech. Chem. Commun.
1974, 39, 1805–1809. (b) Štíbr, B.; Plešek, J.; Heřmánek, S. Chem. Ind. (London) 1972, 963–964. (c) Wermer, J. R.; Hosmane, N. S.; Alexander, J. J.; Siriwardane, U.; Shore, S. G. Inorg. Chem. 1986, 25, 4351–4354.

Table VII. Refined Positional Parameters for PPN⁺*nido*-7-(MeC(O))-7,8-C₂B₉H₁₁⁻, **8**

atom	x	У	Z	Beq,ª Å ²
C7	0.7254(3)	0.1335(1)	0.8784(1)	4.94(6)
CB8	0.7079(3)	0.1765(1)	0.8092(2)	5.85(7)
C12	0.6646(4)	0.0728(2)	0.8653(2)	7.19(8)
C13	0.6875(5)	0.0283(2)	0.9253(3)	10.9(1)
Bl	0.9550(3)	0.2020(2)	0.8973(2)	5.07(7)
B2 B4	0.8802(3)	0.1439(2) 0.2100(2)	0.9377(2) 0.8114(2)	4.00(0)
B5	0.8458(3)	0.2177(2) 0.2671(2)	0.8114(2) 0.8877(2)	5 53(8)
B6	0.8683(3)	0.2189(2)	0.9674(2)	5.10(7)
B9	0.6897(4)	0.2472(2)	0.8289(2)	5.96(8)
B 10	0.7078(3)	0.2505(2)	0.9282(2)	6.14(8)
BC11	0.7264(3)	0.1712(2)	0.9545(2)	5.77(7)
B3	0.8632(4)	0.1461(2)	0.8414(2)	4.92(8)
BI2	0.624(2) 0.5070(3)	0.180/(8) 0.0578(1)	0.8/4(1) 0.8047(2)	0./(4)
P1	0.5979(3) 0.66117(5)	0.0378(1) 0.12925(2)	0.22696(3)	3 08(1)
P2	0.75910(5)	0.07640(3)	0.37531(3)	3.10(1)
NI	0.6591(2)	0.10977(8)	0.30897(9)	3.38(4)
C14	0.4892(2)	0.13320(9)	0.1736(1)	3.22(4)
C15	0.4626(2)	0.1365(1)	0.0966(1)	4.44(5)
C16	0.3314(3)	0.1420(1)	0.0558(1)	5.17(6)
C17	0.2262(3)	0.1437(1)	0.0906(2)	5.22(6)
C10	0.2309(3) 0.3827(2)	0.1411(2) 0.1355(1)	0.1000(2) 0.2084(1)	3.00(7)
C20	0.7433(2)	0.0751(1)	0.1790(1)	3.64(4)
C21	0.8674(2)	0.0845(1)	0.1616(1)	4.62(5)
C22	0.9249(3)	0.0381(2)	0.1287(2)	6.21(7)
C23	0.8616(3)	-0.0167(1)	0.1136(2)	6.50(7)
C24	0.7384(3)	-0.0266(1)	0.1312(2)	6.35(7)
C25	0.6791(3)	0.0194(1)	0.1637(1)	4.85(6)
C26	0.7523(2) 0.7513(2)	0.2038(1) 0.2391(1)	0.2240(1) 0.2877(2)	5.62(4)
C28	0.7985(4)	0.2983(1)	0.2877(2) 0.2863(2)	8.73(9)
C29	0.8270(3)	0.3219(1)	0.2240(2)	6.82(8)
C30	0.8089(3)	0.2874(1)	0.1617(2)	6.00(7)
C31	0.7613(3)	0.2289(1)	0.1611(1)	4.99(6)
C32	0.6749(2)	0.0114(1)	0.4029(1)	3.42(4)
C33	0.5603(2)	-0.0120(1)	0.355/(1)	4.49(5)
C34	0.4972(3) 0.5486(3)	-0.0027(1)	0.3770(2) 0.4435(2)	5 72(6)
C36	0.6624(3)	-0.0681(1)	0.4898(2)	6.66(7)
C37	0.7254(3)	-0.0170(1)	0.4704(1)	5.42(6)
C38	0.9144(2)	0.0509(1)	0.3540(1)	3.55(4)
C39	0.9342(3)	-0.0092(1)	0.3371(1)	4.71(5)
C40	1.0515(3)	-0.0258(1)	0.3152(2)	6.26(7)
C41 C42	1.140/(3) 1.1281(2)	0.01/2(2) 0.0765(2)	0.3098(2) 0.3269(2)	0.33(7)
C42 C43	1.1261(2) 1.0126(2)	0.0703(2) 0.0943(1)	0.3284(1)	4 55(5)
C44	0.8040(2)	0.1247(1)	0.4553(1)	3.49(4)
C45	0.7085(2)	0.1654(1)	0.4692(1)	4.35(5)
C46	0.7369(3)	0.2008(1)	0.5327(2)	5.62(6)
C47	0.8593(3)	0.1965(1)	0.5817(1)	5.73(7)
C48	0.9551(3)	0.1573(1)	0.5683(2)	5.84(7)
U49	1.060(2)	0.1205(1)	0.5055(1)	4.90(0)
H2	0.940(2)	0.102(1)	0.969(1)	6.3(7)
H3	0.899(3)	0.114(2)	0.815(2)	10(1)
H4	0.883(4)	0.232(2)	0.760(2)	12(1)
H5	0.899(2)	0.314(1)	0.893(1)	6.0(6)
H6	0.929(3)	0.235(1)	1.021(1)	7.2(7)
Hð	U.648(3)	0.158(2)	0.761(2)	9.7(9)
ПУ Н109	0.023(3)	0.277(1)	0.783(2)	0.2(0) 8 7(9)
HIOD	0.625(3)	0.218(1)	0.892(2)	6.1(8)
H11	0.676(3)	0.148(1)	1.008(2)	7.9(8)

 $\overline{{}^{a}B_{eq}} = \frac{4}{3}[\beta_{11}a^{2} + \beta_{22}b^{2} + \beta_{33}c^{2} + \beta_{12}ab\cos\gamma + \beta_{13}ac\cos\beta + \beta_{23}bc\cos\alpha].$

in the range expected for carbon-carbon single bonds. The C6-B2 distances are quite long (2.015(8) Å for 1 and 1.991(4) Å for 2), and the B2-B1, B2-B3, and B1-B3 distances are unusually short ($\sim 1.64-1.71$ Å), when compared to similar distances in the isoelectronic analogues above or to those in *nido*-B₁₀H₁₄.¹¹

(11) Tippe, A.; Hamilton, W. C. Inorg. Chem. 1969, 8, 464-470.

Su et al.

Table VII arachno-6	I. Bond I 5-(MeOC(0	Distances (Å) D)CH ₂)-5,6,7-	in C3B7H12, 2		
B1-B2	1.675(5)	B4B8	1.814(5)	C5-C6	1.570(4)
B1-B3	1.709(5)	B4-B9	1.712(5)	C5-H5	0.931(23)
B1-B4	1.762(5)	B4-B10	1.814(5)	C6C7	1.569(3)
B1-B10	1.786(5)	B4H4	1.099(22)	C6-C11	1.520(3)
B1-C5	1.701(4)	B8-B9	1.817(5)	C6-H6	0.966(19)
B1-H1	1.065(25)	B8-C7	1.631(4)	C7-H7	0.904(24)
B2-B3	1.678(4)	B8-H8	1.125(25)	C11-C12	1.492(3)
B2-C5	1.703(4)	B8-H89	1.391(26)	C11-H11a	0.951(23)
B2-C6	1.991(4)	B9-B10	1.817(5)	C11-H11b	0.973(25)
B2-C7	1.708(4)	B9-H9	1.055(24)	C12-O13	1.200(3)
B2-H2	1.116(24)	B9-H89	1.195(26)	C12-O14	1.323(3)
B3-B4	1.765(5)	B9-H910	1.218(25)	C15-O14	1.452(3)
B3-B8	1.797(5)	B10-C5	1.633(4)	C15-H15a	0.984(33)
B3-C7	1.702(4)	B10–H10	1.069(27)	C15-H15b	1.055(34)
B3-H3	1.093(24)	B10–H910	1.363(24)	C15-H15c	0.921(30)
Table IX. Me ₄ N ⁺ hy	Selected	Bond Distanc CCH ₂)-1,2,5-C	es (Å) in C ₃ B ₆ H ₁₂ -, 5		
B 7– B 11	1.921(5)	B7-B12	1.865(4)	B7-C2	1.550(4)
B7-H7	1.086(28) B7 – H78	1.420(26)	B8-B9	1.774(5)
B8-B12	1.732(5)	B8-H8	1.250(28)	B8-H78	1.088(21)
B8-H89	1.223(27) B9-B10	1.943(6)	B9-B12	1.849(5)
B9-C5	1.303(4)	B9-H9	1.100(34)	B9-H89	1.430(28)
BIO-BII	1./98(4)	BI0-BI2	1.811(3)	BI0-C3	1.280(4)
B10-H10	1.084(23	D11 U11	1.20/(21)	DI1-D12 D11 U1011	1.80/(4)
B11-C2 B12_H12	1.362(4)	$D_{1-C_{2}}$	1.131(30)		1.500(25)
B7_B8	1.790(5)	C1-C13	1.537(3)	C1-C3	0.998(24)
C2-H2	0.855(18	$C_{-H_{5}}$	0.865(29)	C13-C14	1 447(4)
C13-H13	a 0.973(29) C13-H13b	0.976(28)	C14-N15	1.132(4)
Table X. arachno-8	Bond Dis 8-(CH ₃ OC(tances (Å) in (O))-7,8,9,10-0	C4B8H13, 6		
Table X. arachno-8 B1-B2	Bond Dis 3-(CH ₃ OC(1.729(7)	tances (Å) in (O))-7,8,9,10-0 B4-C9	C ₄ B ₈ H ₁₃ , 6	B12-HB12	1.281(40)
Table X. arachno-8 B1-B2 B1-B3	Bond Dis ³ -(CH ₃ OC(1.729(7) 1.747(6)	tances (Å) in (O))-7,8,9,10-(B4-C9 B4-B5	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7)	B12-HB12 B12-H12	1.281(40) 1.036(35)
Table X. arachno-8 B1-B2 B1-B3 B1-B4	Bond Dis ³ -(CH ₃ OC(1.729(7) 1.747(6) 1.732(7)	tances (Å) in (O))-7,8,9,10-(B4-C9 B4-B5 B4-C9	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6)	B12-HB12 B12-H12 B12-H1112	1.281(40) 1.036(35) 1.281(40)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8)	tances (Å) in (O))-7,8,9,10-(B4-C9 B4-B5 B4-C9 B4-C10	$\frac{C_4B_8H_{13}, 6}{1.721(6)}$ 1.721(6) 1.721(6) 1.721(6) 1.705(7)	B12-HB12 B12-H12 B12-H1112 C7-C8	1.281(40) 1.036(35) 1.281(40) 1.534(5)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7)	tances (Å) in (O))-7,8,9,10-4 B4-C9 B4-B5 B4-C9 B4-C10 B4-H4	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38)	B12-HB12 B12-H12 B12-H1112 C7-C8 C7-H7a	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7) 1.094(32)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7)	B12-HB12 B12-H12 B12-H1112 C7-C8 C7-H7a C7-H7b	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 D5-00	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7) 1.749(7)	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-B6	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6) 1.755(7)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-B5 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B4-H4	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7) 1.749(7) 1.675(5)	B12-HB12 B12-H12 B12-H1112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-B6 B2-B12	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6) 1.755(7) 1.978(7) 2.226(6)	tances (Å) in (O))-7,8,9,10-4 B4-C9 B4-C9 B4-C10 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6 D11	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7) 1.749(7) 1.676(5) 1.044(37)	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-C10	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.533(6)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-B6 B2-B7 B2-C7	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7) 1.765(7) 1.094(32) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.027(5)	tances (Å) in (O))-7,8,9,10-4 B4-C9 B4-C9 B4-C10 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B11 B6-B12	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7) 1.749(7) 1.676(5) 1.044(37) 1.806(7)	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10 U10	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.533(6) 1.018(27) 0.0802700
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-B6 B2-B12 B2-C7 B2-C8 B2-W2	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.123(25)	tances (Å) in (O))-7,8,9,10-4 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-B12 B6-B12	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7) 1.749(7) 1.676(5) 1.044(37) 1.806(7) 1.800(7) 1.42(20)	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 C4-O4	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.224(5)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-B12 B2-C7 B2-C8 B2-H2 B2-H2 B2-H2	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35)	tances (Å) in (O))-7,8,9,10-4 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11 B12	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7) 1.749(7) 1.676(5) 1.044(37) 1.800(7) 1.800(7) 1.143(29) 1.907(8)	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-B12 B2-C7 B2-C7 B2-C8 B2-H2 B3-B4 B2-C8	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.723(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.670(5)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B1-B12	C4B8H13, 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7) 1.749(7) 1.676(5) 1.044(37) 1.806(7) 1.800(7) 1.43(29) 1.897(8)	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB C8-OA	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.498(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.192(4)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B6 B2-B12 B2-C7 B2-C8 B2-H2 B3-B4 B3-C8 B3-C8	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.979(5)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11 H11	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7) 1.749(7) 1.676(5) 1.044(37) 1.806(7) 1.806(7) 1.800(7) 1.143(29) 1.897(8) 1.6226(6) 1.027(26)	B12-HB12 B12-H12 B12-H1112 C7-C8 C7-H7a C7-H7b C8-C9 C8-C4 C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-UCPa	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.488(5) 1.533(6) 1.533(6) 0.893(30) 1.334(5) 1.192(4) 1.463(5)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B6 B2-B12 B2-C7 B2-C8 B2-H2 B3-B4 B3-C8 B3-C9 B2	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H11 B11 U112	C ₄ B ₈ H ₁₃ , 6 1.721(6) 1.720(7) 1.721(6) 1.705(7) 1.045(38) 1.738(7) 1.749(7) 1.676(5) 1.044(37) 1.800(7) 1.800(7) 1.43(29) 1.897(8) 1.626(6) 1.074(36) 1.259(42)	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.018(27) 0.893(30) 1.334(5) 1.192(4) 1.463(5) 0.826(43) 0.826(43)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B6 B2-B12 B2-C7 B2-C8 B2-H2 B3-B4 B3-C8 B3-C9 B3-H3	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.732(7) 1.732(8) 1.765(7) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H11 B11-H112	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.806(7)\\ 1.800(7)\\ 1.143(29)\\ 1.897(8)\\ 1.626(6)\\ 1.074(36)\\ 1.259(43)\\ 1.603(3)\\ 1$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa CB-HCBa	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.334(5) 0.826(43) 1.088(52) 0.9266(22)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-B12 B2-C7 B2-C7 B3-B4 B3-C8 B3-C9 B3-H3	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.723(8) 1.755(7) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H112 B12-C7	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.806(7)\\ 1.806(7)\\ 1.143(29)\\ 1.87(8)\\ 1.626(6)\\ 1.074(36)\\ 1.259(43)\\ 1.602(6) \end{array}$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa CB-HCBb	$\begin{array}{c} 1.281(40)\\ 1.036(35)\\ 1.281(40)\\ 1.534(5)\\ 1.012(29)\\ 1.046(38)\\ 1.488(5)\\ 1.498(5)\\ 1.533(6)\\ 1.018(27)\\ 0.893(30)\\ 1.334(5)\\ 1.343(5)\\ 1.343(5)\\ 0.826(43)\\ 1.088(52)\\ 0.966(32) \end{array}$
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B6 B2-B12 B2-C7 B3-B4 B3-C8 B3-C8 B3-C9 B3-H3	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.732(7) 1.732(8) 1.755(7) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30) Selected chno-8-(N(tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H11 B11-H112 B12-C7 Bond Distanc C)-7,8-C2B10H	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.806(7)\\ 1.800(7)\\ 1.143(29)\\ 1.897(8)\\ 1.626(6)\\ 1.074(36)\\ 1.259(43)\\ 1.602(6)\\ \hline \\ es\ (Å)\ in\\ I_{14}, \ 7\\ \hline \end{array}$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa CB-HCBc	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.334(5) 1.345(5) 0.826(43) 1.088(52) 0.966(32)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B2-B12 B2-B12 B2-C7 B2-B2 B3-B4 B3-C8 B3-C9 B3-H3	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.732(7) 1.732(8) 1.765(7) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30) Selected chno-8-(Notest and the second secon	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H112 B12-C7 Bond Distanc C)-7,8-C2B10H D) B12-C7	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.806(7)\\ 1.806(7)\\ 1.806(7)\\ 1.143(29)\\ 1.897(8)\\ 1.626(6)\\ 1.074(36)\\ 1.259(43)\\ 1.602(6)\\ \hline \\ es\ (Å)\ in\\ I_{14}, \ 7\\ \hline \\ 1.579(9) \end{array}$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa CB-HCBb CB-HCBc	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.192(4) 1.463(5) 0.826(43) 1.088(52) 0.966(32) 1.738(9)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B2-B3 B2-C7 B2-C8 B2-H2 B3-B4 B3-C8 B3-C9 B3-H3	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.689(30) Selected chno-8-(N(C) 1.687(11) 1.504(9)	tances (Å) in (O))-7,8,9,10-(B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H1112 B12-C7 Bond Distanc C)-7,8-C ₂ B ₁₀ H D) B12-C7 B1-B4	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.800(7)\\ 1.800(7)\\ 1.143(29)\\ 1.897(8)\\ 1.626(6)\\ 1.074(36)\\ 1.259(43)\\ 1.602(6)\\ \hline \\ es\ (Å)\ in\\ I_{14^-}, \ 7\\ \hline 1.579(9)\\ 1.768(7)\\ \end{array}$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBb CB-HCBb CB-HCBc	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.498(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.192(4) 1.463(5) 0.826(43) 1.088(52) 0.966(32) 1.738(9) 1.455(7)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-C7 B2-C8 B2-H2 B3-B4 B3-C8 B3-C9 B3-H3	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30) Selected chno-8-(N(0) 1.687(10) 1.504(9) 1.713(7)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H1112 B12-C7 Bond Distance C)-7,8-C2B10H O) B12-C7 B1-B4 O) B2-B3	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.806(7)\\ 1.800(7)\\ 1.143(29)\\ 1.897(8)\\ 1.622(6)\\ 1.074(36)\\ 1.259(43)\\ 1.602(6)\\ 1.692(43)\\ 1.602(6)\\ 1.579(9)\\ 1.768(7)\\ 1.691(11)\\ \end{array}$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa CB-HCBc B1-B3 C8-CA B2-B6	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.498(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.018(27) 0.893(30) 1.334(5) 1.018(27) 0.893(30) 1.334(5) 1.018(52) 0.966(32) 1.738(9) 1.455(7) 1.825(10)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-C7 B2-C8 B2-H2 B3-B4 B3-C8 B3-C9 B3-H3	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.732(7) 1.723(8) 1.765(7) 1.094(32) 1.755(7) 1.755(7) 1.755(7) 1.755(7) 1.778(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30) Selected chno-8-(N(1.687(10) 1.687(10) 1.713(7) 2.109(10)	tances (Å) in (O))-7,8,9,10-(B4-C9 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H112 B12-C7 Bond Distance C)-7,8-C ₂ B ₁₀ H D) B12-C7 D) B12-C7	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.806(7)\\ 1.800(7)\\ 1.143(29)\\ 1.806(7)\\ 1.43(29)\\ 1.897(8)\\ 1.626(6)\\ 1.259(43)\\ 1.626(6)\\ 1.259(43)\\ 1.69(43)\\ 1.69(3)\\ 1.579(9)\\ 1.768(7)\\ 1.691(11)\\ 1.899(7)\\ \end{array}$	B12-HB12 B12-H112 B12-H1112 C7-C8 C7-H7a C7-H7b C8-C9 C8-C4 C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-HCB0 CB-HC0 CB-HC0 CB-HC0 CB-HC0 CB-HC0 CB-HC0	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.192(4) 1.463(5) 0.826(43) 1.088(52) 0.966(32) 1.738(9) 1.455(7) 1.825(10) 1.749(8)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-C7 B2-C8 B2-H2 B3-B4 B3-C9 B3-H3	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.723(8) 1.765(7) 1.723(8) 1.755(7) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30) Selected chno-8-(N(1)) 1.687(10) 1.687(10) 1.687(10) 1.687(10) 1.687(10) 1.613(7) 2.109(11) 1.813(6)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H112 B12-C7 Bond Distance C)-7,8-C ₂ B ₁₀ H D) B12-C7) B1-B4) B2-C8 D) B2-C8) B3-C8	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.607(6)\\ 1.800(7)\\ 1.43(29)\\ 1.800(7)\\ 1.43(29)\\ 1.800(7)\\ 1.43(29)\\ 1.626(6)\\ 1.074(36)\\ 1.259(43)\\ 1.602(6)\\ \hline \\ \hline$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa CB-HCBb CB-HCBc B1-B3 C8-CA B3-B4 B4-B5	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.488(5) 1.498(5) 1.018(27) 0.893(30) 1.334(5) 1.192(4) 1.463(5) 0.826(43) 1.088(52) 0.966(32) 1.738(9) 1.455(7) 1.825(10) 1.749(8) 1.734(9)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B6 B1-H1 B2-B3 B2-C7 B2-C8 B2-C7 B3-B4 B3-C8 B3-C9 B3-H3	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.732(7) 1.723(8) 1.765(7) 1.794(32) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30) Selected chno-8-(N(C) 1.687(10) 1.504(9) 1.713(7) 2.109(10) 1.813(6) 1.761(8) 1.76	tances (Å) in (O))-7,8,9,10-(B4-C9 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H112 B12-C7 Bond Distanc C)-7,8-C2B10H O) B12-C7) B1-B4 O) B2-C8) B3-C8) B3-C8	$\begin{array}{c} C_4 B_8 H_{13}, \ \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.806(7)\\ 1.800(7)\\ 1.800(7)\\ 1.800(7)\\ 1.800(7)\\ 1.43(29)\\ 1.626(6)\\ 1.074(36)\\ 1.259(43)\\ 1.626(6)\\ 1.259(43)\\ 1.602(6)\\ \hline \\ es \ (\ \ A) \ in\\ 1.47, \ 7\\ \hline 1.579(9)\\ 1.768(7)\\ 1.691(11)\\ 1.899(7)\\ 1.657(8)\\ 1.708(9)\\ \hline \end{array}$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa CB-HCBb CB-HCBc B1-B3 C8-CA B2-B6 B3-B4 B4-B5 B5-B6	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.018(27) 0.893(30) 1.334(5) 1.192(4) 1.463(5) 0.826(43) 1.088(52) 0.966(32) 1.738(9) 1.455(7) 1.825(10) 1.749(8) 1.749(8)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B2-B12 B2-B12 B2-C7 B2-C8 B3-C9 B3-C8 B3-C9 B3-H3 Table XI. PPN+aran B1-B2 C7-C8 B1-B5 B2-B10	Bond Dis B-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.732(7) 1.732(7) 1.732(7) 1.732(7) 1.723(8) 1.765(7) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30) Selected chno-8-(N(C) 1.687(10) 1.504(9) 1.713(7) 2.109(10) 1.813(6) 1.761(8) 1.700(7)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H11 B11-H112 B12-C7 Bond Distanc C)-7,8-C2B10H D) B12-C7 B1-B4 D) B2-C8 D B3-C8 D B5-B11	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.800(7)\\ 1.800(7)\\ 1.800(7)\\ 1.800(7)\\ 1.800(7)\\ 1.143(29)\\ 1.897(8)\\ 1.626(6)\\ 1.074(36)\\ 1.259(43)\\ 1.602(6)\\ \hline \\ \hline$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa CB-HCBb CB-HCBc B1-B3 C8-CA B2-B6 B3-B4 B4-B5 B5-B6 B6-B11	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.488(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.334(5) 0.826(43) 1.088(52) 0.966(32) 1.738(9) 1.455(7) 1.825(10) 1.738(9) 1.749(8) 1.779(6)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B1 B2-B3 B2-C7 B2-C8 B3-B4 B3-C8 B3-C9 B3-H3 Table XI. PPN+arad B1-B2 C7-C8 B1-B5 B2-B12 B3-B9 B4-B9 B5-B10 B6-B12	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.722(7) 1.723(8) 1.765(7) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30) Selected chno-8-(N(0) 1.687(10) 1.504(9) 1.713(7) 2.109(10) 1.813(6) 1.700(7) 1.799(8) 1.700(7)	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H11 B11-H1112 B12-C7 Bond Distanc C)-7,8-C ₂ B ₁₀ H D) B12-C7 B1-B4 D) B2-C8 D B2-C8 D B3-C8 D B3-C8 D B5-B11 D B9-B10	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.806(7)\\ 1.806(7)\\ 1.800(7)\\ 1.143(29)\\ 1.800(7)\\ 1.143(29)\\ 1.626(6)\\ 1.074(36)\\ 1.259(43)\\ 1.602(6)\\ \hline \\ \hline$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CA-OB CB-OA CB-HCBa CB-HCBa CB-HCBb CB-HCBc B1-B3 C8-CA B2-B6 B3-B4 B4-B5 B5-B6 B6-B11 B9-C8	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.498(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.192(4) 1.463(5) 0.826(43) 0.826(43) 1.088(52) 0.966(32) 1.738(9) 1.455(7) 1.825(10) 1.749(8) 1.734(9) 1.749(8) 1.779(6) 1.649(7)
Table X. arachno-8 B1-B2 B1-B3 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B4 B1-B5 B1-B1 B2-B3 B2-C7 B2-C8 B2-H2 B3-B4 B3-C8 B3-C9 B3-H3 Table XI. PPN+araa B1-B2 C7-C8 B1-B2 C7-C8 B1-B5 B2-B12 B3-B9 B4-B9 B5-B10 B6-B12 B10-B11	Bond Dis 3-(CH ₃ OC(1.729(7) 1.747(6) 1.732(7) 1.723(8) 1.765(7) 1.782(6) 1.755(7) 1.978(7) 2.236(6) 2.079(5) 1.133(35) 1.770(7) 1.679(5) 1.800(6) 1.089(30) Selected chno-8-(N(0) 1.687(10) 1.687(10) 1.687(10) 1.687(10) 1.687(10) 1.687(10) 1.687(10) 1.687(10) 1.713(7) 2.109(10) 1.813(6) 1.700(7) 1.799(8) 1.809(10) 1.8	tances (Å) in (O))-7,8,9,10-0 B4-C9 B4-C9 B4-C10 B4-H4 B5-B6 B5-B11 B5-C10 B5-H5 B6-B11 B6-B12 B6-H6 B11-B12 B11-C10 B11-H1112 B12-C7 Bond Distanc C)-7,8-C ₂ B ₁₀ H O) B12-C7 B1-B4 D B2-B3 O) B2-C8 D B3-C8 D B3-C8 D B3-C8 D B1-B12	$\begin{array}{c} C_4 B_8 H_{13}, \ 6\\ \hline 1.721(6)\\ 1.720(7)\\ 1.721(6)\\ 1.705(7)\\ 1.045(38)\\ 1.738(7)\\ 1.749(7)\\ 1.676(5)\\ 1.044(37)\\ 1.806(7)\\ 1.806(7)\\ 1.800(7)\\ 1.143(29)\\ 1.800(7)\\ 1.143(29)\\ 1.802(6)\\ \hline 1.074(36)\\ 1.259(43)\\ 1.602(6)\\ \hline 1.60$	B12-HB12 B12-H12 B12-H112 C7-C8 C7-H7a C7-H7b C8-C9 C8-CA C9-C10 C9-H9 C10-H10 CA-OA CB-HCBa CB-HCBa CB-HCBb CB-HCBb CB-HCBc B3-B4 B4-B5 B5-B6 B6-B11 B9-C8 CA-N1	1.281(40) 1.036(35) 1.281(40) 1.534(5) 1.012(29) 1.046(38) 1.498(5) 1.498(5) 1.533(6) 1.018(27) 0.893(30) 1.334(5) 1.192(4) 1.463(5) 0.826(43) 0.826(43) 0.826(43) 1.088(52) 0.966(32) 1.738(9) 1.455(7) 1.825(10) 1.749(8) 1.734(9) 1.749(8) 1.779(6) 1.649(7) 1.144(7)

These distances suggest a reduced bonding interaction between C6 and B2 and largely localized two-center single bonds between the C6 carbon and C5 and C7. Thus, the cluster could be considered to be composed of both "classical" electron-precise and "nonclassical" electron-deficient components. In the limit where C6 and B2 are nonbonding, then, instead of being considered part of the cluster framework, C6 might be viewed as a carbon-carbon bridging exopolyhedral substituent on the starting carborane framework, i.e. arachno- $\mu_{6.8}$ -RCH-6,8-C₂B₇H₁₁. We have

Table XII. Selected Bond Distances (Å) in PPN+nido-7-(MeC(O))-7,8-C₂B₉H₁₁⁻, 8

C7-CB8	1.570(4)	B5-H5	1.157(25)	B6-B10	1.766(4)
C7-B2	1.712(4)	B6-BC11	1.752(5)	C7-BC11	1.632(4)
B6-H6	1.091(25)	C7-B3	1.715(5)	B9-B10	1.808(5)
CB8-B4	1.690(5)	B9-H9	1.137(27)	CB8-B9	1.614(5)
B10-BC11	1.808(5)	CB8-B3	1.688(5)	B10-H10a	1.166(32)
CB8-H8	1.044(29)	B10-H10b	1.190(29)	C12-O1	1.216(4)
BC11-H11	1.313(31)	B1-B2	1.739(5)	B3-H3	0.985(35)
B1-B4	1.758(4)	B12-H10b	0.757(36)	B1-B5	1.793(5)
B1-B6	1.768(5)	B1-B3	1.731(5)	B1-H1	1.054(25)
B2-B6	1.748(5)	B2-BC11	1.763(5)	B2-B3	1.753(5)
B2-H2	1.171(24)	B4-B5	1.755(5)	B4-B9	1.797(6)
B4-B3	1.708(5)	B4-H4	1.135(40)	B5-B6	1.789(5)
B5-B9	1.759(5)	B5-B10	1.771(6)	C12-C13	1.459(5)
C7-C12	1.464(4)	C7-B12	1.543(17)	B9-B12	1.774(19)
B10-B12	1.819(17)	CB8-B12	1.632(20)	BC11-B12	1.647(17)

Figure 2. Derivation of the observed cage structures of *arachno*-6- (RCH_2) -5,6,7-C₃B₇H₁₂ (R = CN (1), C(O)OMe (2), or C(O)Me (3)) and *hypho*-1- $(NCCH_2)$ -1,2,5-C₃B₆H₁₂⁻ (5) from an icosahedron.

previously discussed¹² similar structural features and alternative bonding descriptions for the related hybrid 9-vertex compounds hypho-1-CH₂-2,5-S₂B₆H₈ and hypho-1-BH₂-2,5-S₂B₆H₉.

The spectral data for compounds 1-3 are consistent with the solid-state structures determined for 1 and 2. Thus, the infrared spectra contain absorptions characteristic of the -CN, -C(O)-Me, or -C(O)OMe groups and show no evidence of a carbon-carbon multiple bond. The ¹¹B NMR spectra for the three compounds show identical features, as shown in Figure 3b for 1, consisting of 5 doublets in a ratio of 1:2:2:1:1, indicating C_s symmetry. In each spectrum, the intensity-two resonance near -4 ppm exhibits doublet fine structure characteristic of bridge-hydrogen coupling, leading to its assignment to the B8,10 borons. This assignment, as well as the other assignments in Table I, are consistent with a 2-D ¹¹B-¹¹B NMR experiment on compound 1, where all expected crosspeaks were observed.

The proton-coupled ¹³C NMR spectrum for each compound shows, in addition to the nitrile or methyl carbons, two doublets for the cage carbons in a ratio of 1:2 and a triplet for the CH₂ carbon. In the proton-decoupled ¹³C NMR spectra, the intensitytwo cage-carbon resonance shows multiplet structure consistent with coupling of the C5,7 carbons to the cage borons ($J_{11B^{13}C} =$ ~35 Hz). The boron-11 decoupled ¹H NMR spectra revealed terminal BH, CH bridging hydrogens and two different cage CH protons in a ratio of 1:2. The resonances observed near 2.8 ppm in each compound are assigned to the methylene protons, which appear as doublets due to their coupling to the C6–H proton. The remaining assignments for the ¹H resonances in Table I were made on the basis of selective-decoupling experiments on 1.

Figure 3. ¹¹B NMR spectra of (a) proton spin decoupled and (b) proton coupled *arachno*-6-(NCCH₂)-5,6,7- $C_3B_7H_{12}$ (1) and (c) proton spin decoupled and (d) proton coupled *hypho*-1-(NCCH₂)-1,2,5- $C_3B_6H_{12}^{-1}$ (5).

Figure 4. Proposed structure of *arachno*-6-(NCCH=CH)-6,8-C₂B₇H₁₁⁻, 4.

When the reaction of *arachno*-6,8-C₂B₇H₁₂⁻ with cyanoacetylene was stopped before acidification, 4 was produced. *arachno*-6,8-C₂B₂H₂⁻ + NCC=CH \rightarrow

$$-0, 0 - C_2 B_7 \Pi_{12} + NCC = C \Pi \rightarrow$$

$$arachno-6-(NCC(H)=CH)-6,8-C_2B_7H_{11}^{-}$$
 (4)

The anion was isolated as its air-sensitive tetramethylammonium salt, the composition of which was established by elemental analysis. The structure proposed in Figure 4 containing a carbonbound cyanovinyl substituent is supported by both the ¹H NMR spectrum, which shows complex vinyl-proton resonances in the 4-5 ppm region, and the infrared spectrum, which shows an absorption characteristic of a carbon-carbon double bond stretch at 1578 cm⁻¹ and both cage and vinyl CH stretching bands in the 3000-3060 cm⁻¹ region. The ¹¹B NMR spectrum, Table I, exhibits seven doublets, consistent with C_1 symmetry, with the absence of a singlet resonance supporting a carbon-substituted cyanovinyl group. The observed fine coupling $(J_{BH(br)} = 30 \text{ Hz})$ on the resonance at -16.9 ppm supports the presence of bridging hydrogens. It should also be noted that the chemical shifts of the boron resonances in 4 are in the ranges observed for the arachno-6,8-C₂B₇H₁₂⁻ anion,¹³ but they are very different than those observed for the isomeric tricarbaborane anion 1- discussed below.

When anion 4 was acidified with anhydrous DCl, a deuteriumsubstituted tricarbaborane was obtained in 63% yield.

arachno-6-(NCC(H)=CH)-6,8-C₂B₇H₁₁ + DCl \rightarrow

arachno-6-(NCCDH)-5,6,7-
$$C_3B_7H_{12}$$
 (5)

^{(12) (}a) Kang, S. O.; Sneddon, L. G. J. Am. Chem. Soc. **1989**, 111, 3281– 3289. (b) Kang, S. O.; Sneddon, L. G. In *Electron Deficient Boron and Carbon Clusters*; Olah, G. A., Wade, K., Williams, R. E., Eds., Wiley: New York, 1991; pp 195–213.

Figure 5. Proposed structure of arachno-6-(NCCH₂)-5,6,7-C₃B₇H₁₁⁻, 1⁻.

The proton-decoupled ¹³C spectrum of 1- d_1 , contains a 1:1:1 triplet (-C(D)H, $J_{CD} = 21$ Hz) at 26.6 ppm for the methylene carbon, indicating deuterium incorporation at this carbon, i.e. (NCC(D)H)-5,6,7-C₃B₇H₁₂. Likewise, the triplet C6-H resonance at -0.11 ppm in the ¹H NMR spectrum of 1 collapses to a doublet in 1- d_1 due to coupling with only the single proton remaining on the -C(D)H group.

Deprotonation of 1 with KH in THF gave the monoanion, arachno-6-(NCCH₂)-5,6,7-C₃B₇H₁₁⁻(1⁻). The anion was readily reprotonated by neutral water to yield 1. 1⁻ is an isomer of 4, but the spectral data for the two anions are very different, leading to the conclusion that they are of different structural types.

The NMR data for 1-support the symmetrical tricarbaborane structure shown in Figure 5. The ¹¹B NMR spectrum is consistent with C_s cage symmetry, and the presence of a BH₂ group is indicated by the intensity-one triplet resonance at -25.7 ppm. Therefore, the deprotonation of 1 results in both the loss of one bridge hydrogen and the conversion of the remaining bridging hydrogen to a terminal hydrogen on the B9 boron. Similar unbridged BH₂ groups have been found in other borane or carborane anions, including nido-3,4-Et₂-3,4-C₂B₅H₆^{-,14} nido- $B_{11}H_{14}^{-,15}$ and *nido*-7,8-C₂B₉H₁₂^{-,16} The endo-B9H resonance appears as a quartet at -3.06 ppm in the ¹H NMR spectrum, and both its shift and the magnitude of the B-H coupling $(J_{BH} = 70)$ Hz) are similar to that observed for the endo proton in *nido*-3,4-Et₂-3,4-C₂B₅H₆⁻. The proton NMR spectrum also shows two cage CH resonances at 0.67 and 0.31 ppm, respectively, in a 2:1 ratio. The ¹H NMR assignments shown in Table I are again consistent with selective-decoupling experiments.

Generally, it has been found that one proton on a cage CH_2 group, as in for example *arachno*-6,8- $C_2B_7H_{13}$, is more acidic than a bridging hydrogen.¹⁷ The fact that in 1 a bridging hydrogen is more acidic than the $-CH_2$ protons provides additional chemical evidence for the "classical" nature of the C6 carbon.

Compound 1 reacted readily with ammonium hydroxide to give the new tricarbaborane $hypho-1-(NCCH_2)-1,2,5-C_3B_6H_{12}$ -(5) as the only cage degradation product.

arachno-6-(NCCH₂)-5,6,7-C₃B₇H₁₂
$$\rightarrow$$

hvpho-1-(NCCH₃)-1,2,5-C₃B₄H₁₂⁻ (7)

A single-crystal X-ray study has confirmed the structure shown in the ORTEP drawing in Figure 6. The observed cage structure may be derived from that found for 1 by removal of the B2 framework atom of 1. As a result, a new five-membered open

Figure 6. ORTEP drawing of the cage structure of $hypho-1-(NCCH_2)-1,2,5-C_3B_6H_{12}^-$, 5.

face containing the C1-C2-B11-B10-C5 atoms is generated which contains a single bridging hydrogen on the B10-B11 edge. Two other bridging hydrogens are present at the B7-B8 and B8-B9 edges in the puckered six-membered open face. Examination of the interatomic distances and angles shows that the C1 atom is in a nearly tetrahedral environment: C5-C1-C13 (109.9-(2)°), C2-C1-C13 (110.4(2)°), and C5-C1-C2 (109.8(2)°). The C1-C2 (1.531(3) Å) and C1-C5 (1.539(3) Å) distances are again in the range expected for normal carbon-carbon single bonds (for example, C1-C13 = 1.537(3) Å), but they are somewhat shorter than the carbon-carbon distances in 1. Relatively long distances are found between B9-B10 and B7-B11, 1.943(6) and 1.921(5) Å, respectively. In 1 and 2, the pentagonal ring containing the three carbons (C5, C6, C7, B1, and B3) is planar, but in 5 the methylene carbon Cl is distorted ~ 0.38 Å out of the C2,C5,B10,B11 plane. The overall cage geometry is, in fact, quite similar to that previously confirmed¹² for hypho-1-(CH₂)- $2,5-S_2B_6H_8$, which contains a methylene group bridging the two sulfur cage atoms. The remaining bond distances and angles in the cage are within the normal ranges expected for carboranes.

There are at least two different ways in which the structure of 5 can be viewed. First, if the anion is considered a tricarbaborane cluster, then the compound would contain 26 electrons and fall into the 9-vertex 2n + 8 hypho electronic class (n = number of cage atoms) and should adopt a structure based on an icosahedron missing three vertices. Such cage geometries have been observed for the isoelectronic analogues hypho-1-(CH₂)-2,5-S₂B₆H₈¹² and hypho-1,2,5-(η^6 -C₆Me₆)RuClS₂B₆H₉¹⁸ and may be derived in a straightforward manner for 5, as illustrated in Figure 2.

Alternatively, the (NCCH₂)CH- group may be viewed as an exo-polyhedral substitutent on a C₂B₆ cluster, i.e. $hypho-\mu_{2.5}$ -(NCCH₂)CH-2,5-C₂B₆H₁₁⁻. As for hypho-1-(CH₂)-2,5-S₂B₆H₈ (exo-CH₂substituent)¹² and hypho-1,2,5-(η^6 -C₆Me₆)RuClS₂B₆H₉ (exo-(η^6 -C₆Me₆)RuCl substituent),¹⁸ the (NCCH₂)CH- fragment could then be considered to bond to the two cage carbons by two conventional 2-center, 2-electron bonds. The tetrahedral angles at Cl and the Cl-C2 and Cl-C5 bond distances support this interpretation. In this view, **5** would be considered a carbon-bridged derivative of the previously known¹⁹ dicarbaborane anion $hypho-7, 8-C_2B_6H_{13}^-$, in which two endo hydrogens are replaced by the carbon-bridging (NCCH₂)CH- group.

The spectroscopic data for 5 are again in accord with the solidstate structure. The ¹¹B NMR spectrum, as shown in Figure 3d, is similar to that of 1, Figure 3b, with the exception that, as expected, the low-field resonance assigned to the B2 boron in 1 is missing in 5. All expected crosspeaks were observed in a ¹¹B-¹¹B COSY experiment. The observed shifts and the assignments are, in fact, quite similar to those observed¹⁹ for hypho-7,8-C₂B₆H₁₃⁻ (-5.71 ppm, B2,5; -31.39 ppm, B6; -33.25 ppm, B3,4;

^{(14) (}a) Beck, J. S.; Quintana, W.; Sneddon, L. G. Organometallics 1988, 7, 1015–1016. (b) Beck, J. S.; Sneddon, L. G. Inorg. Chem. 1990, 29, 295–302.

⁽¹⁵⁾ Getman, T. D.; Krause, J. A.; Shore, S. G. Inorg. Chem. 1988, 27, 2398-2399.

 ^{(16) (}a) Buchanan, J.; Hamilton, E. J. M.; Reed, D.; Welch, A. J. J. Chem.
 Soc., Dalton Trans. 1990, 677–680. (b) Fontaine, X. L. R.; Greenwood, N.
 N.; Kennedy, J. D.; Nestor, K.; Thornton-Pett, M.; Heřmánek, S.; Jelinek,
 T.; Štíbr, B. J. Chem. Soc., Dalton Trans. 1990, 681–689.

⁽¹⁷⁾ Williams, R. Adv. Inorg. Chem. Radiochem. 1976, 18, 67-142.

⁽¹⁸⁾ Mazighi, K.; Carroll, P. J.; Sneddon, L. G. Inorg. Chem. 1992, 31, 3197-3204.

⁽¹⁹⁾ Jelinek, T.; Plešek, J.; Heřmánek, S.; Štíbr, B. Main Group Met. Chem. 1987, 10, 387-388.

Reactions of Borane Anions with Polarized Acetylenes

Figure 7. ORTEP drawing of the structure of $arachno-8-(CH_3OC(O))-7,8,9,10-C_4B_8H_{13}$, 6.

-55.34 ppm, B1). Two types of bridging hydrogens with an intensity ratio of 2:1 were observed in the boron-decoupled ¹H NMR spectrum. The B10–H–B11 bridging hydrogen at -3.01 ppm appears as a triplet due to its coupling to H11 and H10. All terminal hydrogens were found, and their assignments were established by selective proton-decoupling experiments. In addition to the cyano–carbon resonance, the ¹³C NMR spectrum showed one broad doublet, one sharp doublet, and one triplet arising from the C2,5, C1, and C13 carbons, respectively.

Dicarbon Insertion Reactions: Syntheses of Di- and Tetracarbon Carboranes. arachno-8-(CH₃OC(O))-7,8,9,10-C₄B₈H₁₃ (6) and arachno-8-(NC)-7,8-C₂B₁₀H₁₄⁻ (7). The nido-5,6-C₂B₈H₁₁⁻ anion reacted smoothly with methyl propiolate in THF to give intermediate anions which, upon acidification, converted to arachno-8-(CH₃OC(O))-7,8,9,10-C₄B₈H₁₃. The new tetracarbaborane was isolated in 57% yield as a white air-sensitive solid. The compound can be stored in vacuo at 0 °C without decomposition. Further purification can be achieved by recrystallization from cold pentane.

$$nido-5, 6-C_2B_8H_{11}^- + HC \equiv CC(O)OMe \xrightarrow{(1) RT}_{(2) H^+}$$

arachno-8-(CH₃OC(O))-7,8,9,10-C₄B₈H₁₃ (8)

The composition of the product was initially established by both elemental analysis and exact mass measurements. As shown in the ORTEP drawing in Figure 7, the crystallographically established structure confirms that two-carbon insertion of the methyl propiolate acetylenic carbons into the carborane framework has occurred to produce a tetracarbaborane. The terminal acetylenic carbon is present (C7) as a CH_2 group, and the ester group is bound to C8. The C7-C8 1.534(5)-Å and B12-C7 1.602-(6)-Å distances are in the normal range for intracage C-C and B-C distances. The cage contains a puckered six-membered open face composed of the C7, C8, C9, C10, B11, and B12 atoms with the four cage carbons in adjacent positions and a single bridging hydrogen present at the B11-B12 edge. The C8, C9, C10, B11, and B12 atoms form a plane parallel to the B2-B3-B4-B5-B6 plane. C7 is distorted out of the C8-C9-C10-B11-B12 plane by 0.63 Å. The B2 cage atom is formally six-coordinate being connected to the C7-C8-B3-B1-B6-B12 ring. The C8-B12-B6-B1-B3 atoms are planar, but the C7 atom is distorted out of this plane by ~ 0.3 Å toward the B2 atom. The B2 atom occupies an asymmetric position above the ring (B2-ring-centroid 0.87

Figure 8. ORTEP drawing of the cage structure of *arachno*-8-(NC)-7,8-C₂B₁₀H₁₄⁻, 7.

Å), with long distances being observed to B12, C7, and C8 (B2– B12 = 1.978(7) Å, C7–B2 = 2.236(6) Å, and B2–C8 = 2.079(5) Å), suggesting weak interactions with these atoms. The C7–B2 distance is, in fact, longer that those between C6 and B2 in 1 and 2, again suggesting that the primary bonding interaction of the C7 carbon in 6 is with C8 and B12. The remaining intracage distances are within the ranges expected for carboranes.

The spectroscopic data are consistent with the established solidstate structure. The ¹¹B NMR spectrum exhibits eight doublets of equal intensity indicating C1 cage symmetry. The resonance at -26.0 ppm (J_{BH} = 140 Hz, $J_{BH(br)}$ = 64 Hz) exhibits a doubletof-doublets structure indicative of bridge-hydrogen coupling. The ¹H NMR spectrum exhibits four CH resonances with the peaks at 1.47 and 1.06 ppm appearing as a doublet and triplet, respectively, leading to their assignments to the protons on the -CH₂ group. All terminal -BH protons and a single bridgingproton resonance were located in the ¹¹B-decoupled proton NMR spectrum. Selective proton-decoupling experiments showed that the bridging hydrogen was strongly coupled to one terminal BH and to the CH resonance at 1.06 ppm, supporting the assignment of the latter peak to the endo-C7H proton. In addition to the resonances arising from the carbonyl and methyl groups, the proton-coupled room temperature ¹³C NMR spectrum showed one singlet, two doublets, and one triplet resonances for the cage carbons, with the latter signal assigned to the CH₂ carbon.

The reaction of nido- $B_{10}H_{13}^-$ with cyanoacetylene in THF solution produced a new dicarbaborane anion, *arachno*-8-(NC)-7,8-C₂ $B_{10}H_{14}^-$. Addition of PPN+Cl⁻ to the reaction solution led to the isolation of its air-stable crystalline PPN+ salt in 87% yield, the composition of which was established by elemental analysis. The anion did not react upon treatment with HCl-diethyl ether.

$$nido-B_{10}H_{13}^- + HC \equiv CCN -$$

$$arachno-8-(NC)-7,8-C_2B_{10}H_{14}^{-}$$
 (9)

The arachno-8-(NC)-7,8- $C_2B_{10}H_{14}^{-}$ is isoelectronic with **6** and a similar cage structure would be expected. Indeed, as shown in the ORTEP drawing in Figure 8, the gross cage structure is identical with that observed for arachno-8-(CH₃OC(O))-7,8,9,-10-C₄B₈H₁₃. The cyano substituent is attached to C8, thus the C7 and C8 cage atoms are readily identified as the acetylenic carbons. The two carbon atoms remain adjacent in the six-membered open face composed of the C7-C8-B9-B10-B11-

Figure 9. Derivation of the observed cage structures of *arachno*-8-(CH₃-OC(O))-7,8,9,10-C₄B₈H₁₃ (6) and *arachno*-8-(NC)-7,8-C₂B₁₀H_{14⁻} (7) from a bicapped hexagonal antiprism.

B12 atoms. As in 6, C7 is distorted out of the C8-B9-B10-B11-B12 plane by 0.60 Å. The C7-C8 distance 1.504(9) Å again indicates reduction of the acetylenic bond. The B2 cage atom is formally six-coordinate, being connected to the C7-C8-B3-B1-B6-B12 ring. Again, as in 6, the C8-B3-B1-B6-B12 atoms form a plane, and the C7 atom is distorted out of this plane by ~0.24 Å toward the B2 atom. The B2 atom also occupies an asymmetric position above the ring (B2 ring centroid, 0.90 Å), with long distances being observed to B12, C7, and C8 (B2-B12 = 2.109(10) Å, C7-B2 = 2.173(9) Å, and B2-C8 = 1.899(7) Å). The CA-N1 distance, 1.144(7) Å, is similar to that found in *arachno*-6-(NCCH₂)-5,6,7-C₃B₇H₁₂ (1.145(7) Å), and the C8-CA-N1 angle is approximately linear, 177.6(4)°. The remaining cage distances and angles are normal.

The spectroscopic data are consistent with the above structure. The ¹¹B NMR spectrum at 160.5 MHz shows 9 doublets with the intensity-2 resonance at -6.2 ppm arising from the overlap of two signals. The ¹¹B-decoupled ¹H NMR spectrum shows all expected terminal BH and two CH resonances, in addition to the two bridging-hydrogen resonances centered at -1.93 and -3.95 ppm. Two doublet-of-doublets signals, arising from the endo-C7H and exo-C7H protons, were found at 0.68 and 1.14 ppm, respectively. Selective proton-decoupling experiments showed that the CH proton at 0.68 ppm is strongly coupled to the bridging hydrogen at -1.93 ppm, but not to the one at -3.95 ppm, leading to its assignment to the endo-C7H and the resonances at -1.93 and -3.95 ppm to the Bl1-H-Bl2 and B9-H-Bl0 protons, respectively. The doublet-of-doublets structure of the exo-C7H was found to result from its coupling to both the endo-C7H proton and the terminal B12H proton at 2.51 ppm. The room temperature proton-coupled ¹³C NMR spectrum showed, in addition to the nitrile carbon signal, a broad singlet at 3.37 ppm and a broad triplet at -4.59 ppm ($J_{CH} = 137 \text{ Hz}$) arising from the C8 and C7 cage carbons, respectively.

As for 1-3 and 5, the structures of 6 and 7 can be described in two ways. If they are considered as 12-vertex clusters, then on the basis of their 30 skeletal-electron counts, they would be considered *arachno* cage systems and, therefore, should adopt cage geometries derived from a bicapped hexagonal antiprism missing two vertices. Indeed, as demonstrated in Figure 9, the observed structures can be derived in this manner by removing a pair of adjacent five-connected vertices. The observed structures for 6 and 7 are consistent with that found for the first structurally characterized 12-vertex *arachno* cluster, $[\sigma-(\eta^5-C_5H_5)Co(\eta^4-C_5H_4)^+]-(CH_3)_4-arachno-C_4B_8H_8^{-.20}$

Alternatively, because of the weak interaction between B2 and C7 in 6 (2.236(6) Å) and 7 (2.173(9) Å), both compounds can be viewed as 11-vertex *arachno* cage systems containing exopolyhedral methylene groups bridging the C8 and B12 cage atoms. This view is supported by the near tetrahedral geometry about C7. For example, the bond angles for B12-C7-C8, H7a-C7-C8, and H7b-C7-C8 in 6 are 108.9(3)°, 104.4(17)°, and 103.5-(21)°, respectively. In the limit that C7-B2 has no bonding interaction, then a four membered open face composed of the

C7-B12-B2-C8 atoms would result. Likewise, the cage structure observed for $[\sigma - (\eta^5 - C_5H_5)Co(\eta^4 - C_5H_4)^+] - (CH_3)_4$ -arachno-C₄B₈H₈-could be alternatively described as an 11-vertex cluster containing a cobaltocenium-substituted exopolyhedral bridging methylene, μ -CH[$(\eta^5 - C_5H_5)Co(\eta^4 - C_5H_4)^+$]-arachno-C₃B₈H₇⁻.

The structures of 6 and 7 may be compared with those observed for other 12-vertex nido-carboranes. The observed structures are quite different than those observed in the solid state for nido- $Me_4C_4B_8H_8$ and *nido*-Et₄C₄B₈H₈, which are composed of a distorted icosahedral cage containing two quadrilateral open faces, and two pyramidal C_2B_4 units joined at their basal B-B edges, respectively.²¹ Two cage isomers of nido-R₂C₂B₁₀H₁₁⁻ have previously been characterized.22,23 Studies of the thermodynamic or "stable" isomer *nido*- $R_2C_2B_{10}H_{11}^-$ (R = Ph²⁴ and Me²⁵) have shown that this isomer has a cage geometry based on a monocarbon ll-vertex nido cage fragment containing a boron-boron bridgingmethylene group (-C(Me)H and -C(Ph)H, respectively) on the open face. Recently, a structural study of the kinetic or "unstable" isomer $[PPh_3Me^+][nido-7,9-Me_2C_2B_{10}H_{11}^-]$ has confirmed a different cage geometry based on a 12-vertex nido fragment that may be obtained by the removal of the hexagonal vertex from the parent 13-vertex closo-docosahedral polyhedron.²⁶ In this isomer, both carbons have only one bound hydrogen, with one carbon bound to three cage boron atoms (<1.8 Å), which results in a quadrilateral opening in the structure. The structures observed for 6 and 7 appear more closely related to that observed for the "unstable" isomer; however, in 6 and 7, the methylenes, $-CH_2$ (C7), are within normal bonding distance to only C8 and B12 with the C7-B2 distance being quite long, creating an apparent quadrilateral face. Long distances are also found in the fourmembered open face for B2-B12 (1.978(7) Å, 6; 2.109(10) Å, 7) and B2-C8 (2.079(5) Å, 6; 1.899(7) Å, 7). A similar type of quadrilateral distortion was observed in σ - $(\eta^5$ -C₅H₅)Co- $(\eta^4 - C_5H_4)^+ - (CH_3)_4C_4B_8H_8^{-20}$ These differences in the structures of the 12-vertex nido and arachno cage geometries are, of course, consistent with the fact that addition of electrons to the cluster framework should result in a more open cage.

nido-7-(RC(O))-7,8-C₂B₉H₁₁⁻ ($\mathbf{R} = \mathbf{Me}$ (8) or OMe (9)). In contrast to the reaction of *nido*-B₁₀H₁₃⁻ with cyanoacetylene, which produces the 12-vertex *arachno*-dicarbaborane 7, the reaction of *nido*-B₁₀H₁₃⁻ with 2 equiv of either 3-butyn-2-one or methyl propiolate results in the formation of the 11-vertex *nido*dicarbaboranes, *nido*-7-(RC(O))-7,8-C₂B₉H₁₁⁻ ($\mathbf{R} = \mathbf{Me}$ (8) or OMe (9)). The anions were isolated in ~75% yields as their air stable crystalline tetramethylammonium or PPN⁺ salts. The compositions of both compounds were established by elemental analyses.

 $nido-B_{10}H_{13}^- + HC \equiv CC(O)R \rightarrow$

 $nido-7-(RC(O))-7,8-C_2B_9H_{11}^{-}$ (10)

R = Me(8) or OMe(9)

In both reactions, 2 equiv of the acetylenes were necessary; since when only 1 equiv was used, a mixture of equal amounts of *nido*-7-(RC(O))-7,8-C₂B₉H₁₁⁻ and unreacted *nido*-B₁₀H₁₃⁻ (estimated by ¹¹B NMR) was obtained. Lowering the reaction

⁽²⁰⁾ Grimes, R. N.; Pipal, J. R.; Sinn, E. J. Am. Chem. Soc. 1979, 101, 4172-4180.

^{(21) (}a) Freyberg, D. P.; Weiss, R.; Grimes, R. N.; Sinn, E. Inorg. Chem. 1977, 16, 1847–1851. (b) Venable, T. L.; Maynard, R. B.; Grimes, R. N. J. Am. Chem. Soc. 1984, 106, 6187–93. (c) Grimes, R. N. Adv. Inorg. Chem. Radiochem. 1983, 26, 55–116 and references therein.

^{(22) (}a) Dunks, G. B.; Wiersema, R. J.; Hawthorne, M. F. J. Chem. Soc., Chem. Commun. 1972, 899–900. (b) Dunks, G. B.; Wiersema, R. J.; Hawthorne, M. F. J. Am. Chem. Soc. 1973, 95, 3174–3179.

⁽²³⁾ A computational study of these two isomers has recently been reported, see: McKee, M. L.; Bühl, M.; Schleyer, P. v. R. *Inorg. Chem.* 1993, 32, 1712-1715.

^{(24) (}a) Tolpin, E. 1.; Lipscomb, W. N. J. Chem. Soc., Chem. Commun. 1973, 257-258. (b) Tolpin, E. 1.; Lipscomb, W. N. Inorg. Chem. 1973, 12, 2257-2262.

 ⁽²⁵⁾ Churchhill, M. R.; DeBoer, B. G. Inorg. Chem. 1973, 12, 2674–2682.
 (26) Getman, T. D.; Knobler, C. B.; Hawthorne, F. M. Inorg. Chem. 1990, 29, 158–160.

Reactions of Borane Anions with Polarized Acetylenes

Figure 10. ORTEP drawing of the cage structure of *nido*-7-(MeC(O))-7,8-C₂B₉H₁₁⁻, 8.

temperature to 0 °C made little difference in the product distribution but gave a large decrease in the reaction rates.

A single-crystal X-ray study of 8, as shown in the ORTEP drawing in Figure 10, established that 8 and 9 are carbon-substituted derivatives of the *nido*-7,8-C₂B₉H₁₂⁻ cage system. In agreement with the recent X-ray crystallographic^{16a} and NMR^{16b} studies of 7,8-C₂B₉H₁₂⁻, an *endo*-hydrogen was located at the B10 boron on the open face. Likewise, the boron-boron and carbon-boron intracage distances and angles are quite similar to those found for the parent 7,8-C₂B₉H₁₂⁻.

The ¹¹B NMR spectra of 8 and 9 contain nine doublet resonances indicating C_1 cage symmetry. All terminal BH and a single cage–CH resonance were observed for both compounds in their ¹¹B-decoupled ¹H-NMR spectra. Both the ¹¹B and ¹H NMR spectra show evidence that the *endo*-B10H hydrogen observed in the solid-state structure may adopt a bridging position at the B10–B9 edge in solution. For example, in the ¹¹B NMR spectra, the peak near -31 ppm shows a doublet-of-doublets structure typical of a boron coupled to both a terminal ($J_{BH} =$ ~135 Hz) and one bridging hydrogen ($J_{BH(br)} =$ ~40 Hz). Likewise, the ¹H NMR spectra of 8 and 9 show broad resonances near -2.6 ppm with line widths typical of bridge hydrogens. In addition to the resonance resulting from the carbonyl carbons, the ¹³C NMR spectra of 8 and 9 show one broad singlet and one broad doublet resonance arising from the C7 and C8 carbons.

arachno-[endo-4-(NCCH=CH)]-6,8-S₂B₇H₈-(10). The thiaborane anion, arachno-6,8-S₂B₇H₈-, readily reacts with cyanoacetylene at room temperature to give one product, arachno-[endo-4-(NCCH=CH)]-6,8-S₂B₇H₈-, which was isolated as its tetramethylammonium salt in 68% yield.

 $nido-6.8-S_2B_7H_8^- + HC \equiv CCN \rightarrow$

arachno-[endo-4-(NCCH=CH)]-6,8- $S_2B_7H_8^-$ (11)

The elemental analysis, spectroscopic data, and a single-crystal X-ray determination²⁷ are consistent with the formation of an *endo* B-substituted cyanovinyl group, *arachno-[endo-*4-(NCCH=CH)]-6,8-S₂B₇H₈⁻, as depicted in Figure 11. The ¹¹B-NMR spectrum consists of 5 doublets in a ratio of 2:1:1:2:1, indicating C_s cage symmetry. Substitution at the B4 position is indicated, since in *arachno*-6,8-S₂B₇H₈⁻ the B4 resonance occurs as a triplet at -50.8 ppm while in 10 this resonance is replaced by a doublet at -38.0 ppm. The proton-coupled ¹³C NMR spectrum shows vinyl carbons at 92.0 (doublet) and 189.5 ppm (doublet-of-quartets), along with a multiplet at 122.8 ppm resulting from the nitrile carbon. In the proton-decoupled spectrum, a quartet ($J_{13}C^{11}B$ = 62 Hz) centered at 189.5 ppm was

Figure 11. Established structure of $arachno-[endo-4-(NCCH=CH)]-6,8-S_2B_7H_8^-$, 10.

observed, which at -85 °C collapsed (due to thermal decoupling of ¹¹B)²⁸ to a singlet, leading to its assignment to the olefinic carbon directly bonded to B4. The presence of the vinyl group is further supported by the ¹H NMR spectrum, which shows complex olefinic C-H resonances at 5.70 (doublet-of-doublets) and 4.87 (multiplet) ppm. The B4-H proton was found at 0.77 ppm, and selective ¹H-decoupling experiments confirmed that this proton was coupled to the C-H proton at 5.70 ppm. The C=C bond stretch (1528 cm⁻¹) in the infrared spectrum is lower than those of normal carbon-carbon double bonds²⁹ (1640–1667 cm⁻¹) due to conjugation with the cyano group, but it is higher than that in acrylonitrile³⁰ (1411 cm⁻¹). As expected, the nitrile band in **10** (2198 cm⁻¹) occurs at similar frequency as **4** (2198 cm⁻¹), but at a lower frequency than those observed in **1** (2248 cm⁻¹), where double bond conjugation is absent.

On the basis of the reaction in eq 3, it was expected that the reaction of 10 with acid should lead to carbon insertion products, but only decomposition was observed upon treatment with anhydrous HCl in CH_2Cl_2 . The conversion of vinyl derivatives of other boranes and carboranes to carbon-insertion products has also been observed upon thermolysis;³¹ however, heating neither *arachno*-[*endo*-4-(NCCH=CH)-6,8-S_2B_7H_8⁻] at reflux in glyme, nor its tetramethylammonium salt as a solid at 160 °C resulted in such products.

Discussion

The results presented above have clearly demonstrated that terminal acetylenes containing strongly electron-withdrawing groups are activated toward reaction with various polyhedral borane anions and that such reactions can ultimately lead to monocarbon or dicarbon insertions. This reaction sequence has thus allowed the syntheses of several unique types of new carboranes. Of particular importance are the reactions leading to the tricarbaboranes 1-3 and 5 since, in contrast to the numerous dicarbaboranes, only a few tricarbaboranes, *nido*-2,3,4-R₂-C₃B₃H₅.³² *nido*-2,3,5-R₅C₃B₃H³³ (R = alkyl or H), *closo*-

(29) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds; Wiley: New York, 1991, pp 105-106.
(30) Raman/Infrared Atlas of Organic Compounds; Schrader, B. Ed., VCH: New York, 1989, p C3-05.

(31) (a) Wilczynski, R.; Sneddon, L. G. J. Am. Chem. Soc. 1980, 102, 2857–2858. (b) Wilczynski, R.; Sneddon, L. G. Inorg. Chem. 1981, 20, 3955–3962.

(32) (a) Bramlett, C. L.; Grimes, R. N. J. Am. Chem. Soc. 1966, 88, 4269–4270. (b) Grimes, R. N.; Bramlett, C. L. J. Am. Chem. Soc. 1967, 89, 2557–2560. (c) Grimes, R. N.; Bramlett, C. L.; Vance, R. L. Inorg. Chem. 1968, 7, 1066–1070.

(33) (a) Kuhlmann, T.; Pritzkow, H.; Zenneck, U.; Siebert, W. Angew. Chem.. Int. Ed. Engl. 1984, 23, 965-966. (b) Zwecker, J.; Pritzkow, H.; Zenneck, U.; Siebert, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 1099-1100.
(c) Zwecker, J.; Kuhlmann, T.; Pritzkow, H.; Siebert, W.; Zenneck, U. Organometallics 1988, 7, 2316-2324. (d) Siebert, W.; Schafer, V.; Brodt, G.; Fessenbecker, A.; Pritzkow, H. Abstracts of Papers, 200th ACS National Meeting, Washington, DC, August, 1990, paper No. 1NOR 381.

⁽²⁷⁾ Wille, A.; Su, K.; Carroll, P. J.; Sneddon, L. G. In preparation.

^{(28) (}a) Wrackmeyer, B. In Progress in NMR Spectroscopy, Emsley, J. W., Feeney, J., Sutcliffe, L. H., Eds.; Pergamon: New York, 1979; Vol. 12, pp 227-259. (b) Gragg, B. R.; Layton, W. J.; Niedenzu, K. J. Organomet. Chem. 1977, 132, 29-36.

C₃B₅H₇,³⁴ nido-6-CH₃-5,6,9-C₃B₇H₁₀,^{1,35} and hypho- $C_3B_4H_{12}$, ³⁶ have previously been reported.³⁷ Thus, the chemistry of this cluster class has not been extensively developed. The arachno-6-(RCH₂)-5,6,7-C₃B₇H₁₂ carboranes 1-3 are the first examples of polyhedral tricarbaboranes in the arachno electronic class,38 and 1, 2, and 5 are the first tricarbaboranes to be structurally characterized. Our initial investigations of the coordination chemistry of the nido-tricarbaborane monoanion $nido-6-CH_3-5,6,9-C_3B_7H_9^-$ have shown³⁵ that tricarbaborane anions exhibit a diverse organometallic chemistry with the resulting metallatricarbaboranes having properties that bridge the polyhedral borane, organometallic, and metal cluster areas. Both the mono- and trianions of the arachno-tricarbaboranes, i.e. arachno-6-(RCH₂)-5,6,7- $C_3B_7H_{11}^-$ and arachno-6- (RCH_2) -5,6,7-C₃B₇H₉³⁻, should now be accessible, and this should result in a considerable expansion of the coordination chemistry and structural diversity of metallatricarbaborane clusters.

Likewise, the supraicosahedral clusters 6 and 7 resulting from the two carbon insertions into the $C_2B_8H_{11}^-$ and $B_{10}H_{13}^-$ frameworks are also unique. Although several 12-vertex *nido* clusters, including the tetracarbaboranes *nido*-R₄-2,3,7,8-C₄B₈H₈ ^{21,39} and *nido*-2,7-(Me₃Si)₂-2,3,7,8-C₄B₈H₁₀⁴⁰ and the dicarbaborane anion *nido*-R₂C₂B₁₀H₁₁⁻,²²⁻²⁶ have been reported, only two 12-vertex *arachno* carborane clusters are known: σ -(η^5 -C₅H₅)Co(η^4 -C₅H₄)⁺-(CH₃)₄C₄B₈H₈⁻ and *arachno*-(CH₃)₄-C₄B₈H₈^{2-,20} Preliminary chemical studies of 6 and 7 have shown that these new carboranes can be used to generate a range of new supraicosahedral metallacarborane clusters.⁴¹

The reactions in eqs 8 and 9 resulted in the production of the previously unknown C-substituted ketone (8) and ester (9) dicarbollide derivatives, *nido*-7-R-7,8-C₂B₉H₁₁⁻. Since the traditional routes to most intermediate dicarbaboranes, including the dicarbollide anion, have employed degradation reactions of either *ortho*- or *meta*-C₂B₁₀H₁₂,⁴² the reactions of *nido*-B₁₀H₁₃⁻ with methyl propiolate and 3-butyn-2-one provide a new alternative one-step pathway to the dicarbollides directly from decaborane(14).

Although the mechanisms of the insertion reactions have not yet been studied in detail, the results of previous studies⁴³ of the reactions of polarized acetylenes with organic nucleophiles, as well as the isolation of compounds 4 and 10, suggest several steps in the reaction sequences that are important to both the

(36) Greatrex, R.; Greenwood, N. N.; Kirk, M. J. Chem. Soc., Chem. Commun. 1991, 1510–1511.

(37) Another tricarbaborane, nido-5,6,10-(CH₃)₃C₃B₇H₉, was reported, but was later discovered to be a tetracarbaborane, see: (a) Štfbr, B.; Jelinek, T.; Janoušek, Z.; Heřmánek, S.; Drdáková, E.; Plzák, Z.; Plešek, J. J. Chem. Soc., Chem. Commun. 1987, 1106–1107. (b) Štfbr, B.; Jelinek, T.; Drdáková, E.; Heřmánek, S.; Plešek, J. Polyhedron 1988, 7, 669–670. (c) Štfbr, B. Chem. Rev. 1992, 92, 225–250.

(38) The formal R₄C₃B₂H³⁻ anions derived from the diborole heterocycles developed by Siebert also fall into the arachno electronic class, but the neutral arachno-R₄C₃B₂H₄ is not known. See, for example: (a) Siebert, W. Angew. Chem. Int. Ed. Engl. 1985, 24, 943–958. (b) Siebert, W. Pure Appl. Chem. 1987, 59, 947–954. (c) Siebert, W. Pure Appl. Chem. 1988, 1345–1348. (d) Attwood, A. T.; Fonda, K. K.; Grinnes, R. N.; Brodt, G.; Hu, D.; Zenneck, U.; Siebert, W. Organometallics 1989, 8, 1300–1303. (e) Brodt, G.; Kuhlmann, T.; Siebert, W. Dem. Ber. 1989, 122, 829–831.

(39) (a) Grimes, R. N. Acc. Chem. Res. 1983, 16, 22-26. (b) Grimes, R. N. Adv. Inorg. Chem. Radiochem. 1983, 26, 55-117.

(40) Hosmane, N. S.; Dehghan, M.; Davies, S. J. Am. Chem. Soc. 1984, 106, 6435-6436.

(41) Donaghy, K. J.; Carroll, P. J.; Sneddon, L. G. In preparation.

 (42) (a) Wiesboeck, R. A.; Hawthorne, M. F. J. Am. Chem. Soc. 1964, 86, 1642–1643. (b) Hawthorne, M. F.; Young, D. C.; Garrett, P. M.; Owen, D. A.; Schwerin, S. G.; Tebbe, F. N.; Wegner, P. A. J. Am. Chem. Soc. 1968, 90, 962–868.

(43) (a) Bohlmann, F.; Bresinsky, E. Chem. Ber. 1964, 97, 2109–2117. (b) Dickstein, J. 1.; Miller, S. 1. In The Chemistry of the Carbon-Carbon Triple Bond; Patai, S., Ed., Wiley: New York, 1978, Chapter 19, pp 813–955.

Scheme I. Possible Reaction Pathways Leading to (A) monocarbon (B) Dicarbon Insertion

monocarbon and dicarbon insertion reactions. The acetylenes, cyanoacetylene, methyl propiolate, and 3-butyn-2-one are strongly polarized by the cyano or carbonyl groups with the terminal carbons in each compound having a partial positive charge. As a result, these acetylenes undergo attack at the terminal carbons by organic nucleophiles, such as alcohols or mercaptans.^{43a} Subsequent rearrangements in these organic systems can then lead to the incorporation of either one or two carbons into a ring system.

As shown in Scheme I, a reaction sequence based on those previously suggested^{41a} for the formation of cyclic organics may be proposed to account for the carbon insertion reactions reported in this paper. The initial step in both the monocarbon and dicarbon insertion reactions would again involve the nucleophilic attack of the anion at the positive terminal carbon of the alkynes to generate an anionic σ -vinyl intermediate with the negative charge localized on the internal vinyl carbon. The structural characterization of the arachno-[endo-4-(NCCH=CH)-6,8-S₂B₇H₈-] (10) product, in which the dithiaborane anion is directly attached to the terminal acetylenic carbon, provides additional support for such a reaction step. Once formed, this intermediate could then react, depending upon the nature of the polyhedral anions, in two different ways, ultimately leading to either monocarbon or dicarbon insertions. Thus, as shown by path A in Scheme I, intramolecular transfer of one acidic proton to the vinylic carbon anion followed by a cyclization reaction could occur to incorporate the terminal carbon into the cluster. In this case, the internal carbon of the olefin would be converted to an exopolyhedral methylene. Alternatively, as shown in path B, the formation of a new bond between the internal carbon and an electrophilic site in the cluster could occur resulting in cyclization at the internal carbon and dicarbon insertion. In this case, the terminal carbon would be incorporated as a cage(bridging)-CH₂ fragment.

Monocarbon insertions were observed in the reactions of arachno-6,8- $C_2B_7H_{12}^-$ with cyanoacetylene, methyl propiolate, or 3-butyn-2-one. A reaction sequence consistent with that given in Scheme IA is illustrated in Scheme II. Previous studies⁴⁴ have shown that in the arachno-6,8- $C_2B_7H_{12}^-$ anion, the negative charge is localized on a cage carbon. Nucleophilic attack of the arachno-6,8- $C_2B_7H_{12}^-$ anion at the cyanoacetylene terminal

⁽³⁴⁾ Thompson, M. L.; Grimes, R. N. J. Am. Chem. Soc. 1971, 93, 6677-6679.

^{(35) (}a) Plumb, C. A.; Carroll, P. J.; Sneddon, L. G. Organometallics 1992, 11, 1665–1671. (b) Plumb, C. A.; Carroll, P. J.; Sneddon, L. G. Organometallics 1992, 11, 1672–1680. (c) Plumb, C. A.; Sneddon, L. G. Organometallics 1992, 11, 1681–1685.

^{(44) (}a) Tebbe, F. N.; Garrett, P. M.; Hawthorne, M. F. J. Am. Chem. Soc. 1966, 88, 607–608. (b) Tebbe, F. N.; Garrett, P. M.; Hawthorne, M. F. J. Am. Chem. Soc. 1968, 90, 869–879.

Scheme II. Proposed Reaction Sequence Leading to Monocarbon Insertion in the Reaction of $arachno-6,8-C_2B_7H_{12}^-$ with Cyanoacetylene

carbon, accompanied by hydrogenation of the acetylenic bond, should then produce a carbon-substituted σ -vinyl anionic product. Such an anion, 4, was, in fact, isolated as the sole product of the reaction before the acidification step and the spectral data are consistent with the structure proposed in the figure. Subsequent acidification of 4 results in monocarbon insertion to produce the tricarbaborane 1 containing the exopolyhedral NCCH₂ substituent at C6. Similar types of σ -vinyl intermediates, formed in the reactions of $4,5-C_2B_7H_{13}$ with acetylene, have been proposed to be precursors to products containing cage-inserted CH2 groups. 37a.b As indicated in Scheme II, the negative charge in 4 should be localized at the C8 cage carbon; however, it was found that acidification of 4 with DCl leads to deuterium incorporation at the cyano-substituted olefinic carbon. This observation suggests that either the proton (or deuteron) adds directly to the olefin or, alternatively, if it adds to C8, then the carbon-insertion process involves the subsequent addition of an endo-C8-H unit to the olefin. The latter step should then result, as observed in 1, in the inserted carbon occupying a position bridging the two original cage carbons.

A reaction sequence leading to dicarbon insertion which is based on that of Scheme IB is illustrated in Scheme III for the reaction of nido-5,6-C₂B₈H₁₁⁻ with methyl propiolate. Deprotonation of nido-5,6-C₂B₈H₁₂ results in the removal of one bridge proton and enhanced electron density at both the B8-B9 and B9-B10 edges. Thus, the initial reaction of $nido-5, 6-C_2B_8H_{11}$ with methyl propiolate should result in the production of a B9bonded σ -vinyl anionic intermediate which could then rearrange to an alkenyl-bridged compound. On the basis of the ¹¹B NMR spectrum of the reaction mixture, such a compound appeared to form, but it was too unstable to be isolated and characterized. In accord with Scheme IB, acidification of the reaction mixture then resulted in the formation of the dicarbon insertion product arachno-8-(CH₃OC(O))-7,8,9,10-C₄B₈H₁₃ (6), in which the terminal carbon is incorporated in the cage as a CH₂ group. In the reaction of nido-B₁₀H₁₃⁻ with cyanoacetylene, carbon insertion without acidification was observed, presumably because intramolecular transfer of an acidic bridging hydrogen occurs.

Whether mono- or dicarbon insertion is observed in these reactions (i.e. path A or B) appears to depend largely on the

Scheme III. Proposed Reaction Sequence Leading to Dicarbon Insertion in the Reaction of $nido-5,6-C_2B_8H_{11}^-$ with Methyl Propiolate

structure and the reactivity of the polyhedral anion. The fact that the products derived from the reactions of *arachno*- $6,8-C_2B_7H_{12}^-$ are tricarbaboranes may arise as a result of both the acidity of the *endo*-C8H proton and the proximity of the C8 carbon to the σ -vinyl group, thereby making addition to the olefin possible. On the other hand, in $5,6-C_2B_8H_{11}^-$ and $B_{10}H_{13}^-$, an additional electrophilic site (i.e. C6, B9) exists on the opposite side of these molecules, which facilitates the two-carbon insertions.

The mechanism leading to the degradative formation of 8 and 9 remains unclear. In the reaction of $B_{10}H_{13}^-$ with methyl propiolate a small amount of *arachno*-8-(MeOC(O))-7,8- $C_2B_{10}H_{14}^-$ was formed. However, the possibility that the reactions occur through the degradation of *arachno*-8-(RC(O))-7,8- $C_2B_{10}H_{14}^-$ (R = C(O)Me, C(O)OMe) can be ruled out, since the ratio of *arachno*-8-(MeOC(O))-7,8- $C_2B_{10}H_{14}^-$ to 8 did not change, even if the reaction mixture was heated at reflux in the presence of 3-butyn-2-one for longer times. Furthermore, no cage degradation product was obtained when 7 was refluxed with 3-butyn-2-one. These observations suggest that the two products were formed by independent reaction pathways.

In conclusion, the results described in this paper have demonstrated an important new synthetic pathway by which mono- or dicarbon insertions into polyhedral boron clusters may be attained. Furthermore, the use of this approach has been shown to allow the synthesis of a number of new types of carborane clusters, most notably the *arachno*-tricarbaboranes and the *arachno*-12-vertex, di- and tetracarboranes, not accessible by conventional carborane-forming reactions. This synthetic method may now result in an even wider array of new carboranes as it is applied to reactions with other polyhedral borane anions. We are presently exploring these possibilities along with the chemistry of the many unique carborane clusters that have already resulted.

Acknowledgment. We thank the National Science Foundation for the support of this research.

Supplementary Material Available: Tables of calculated hydrogen positional parameters, anisotropic temperature factors, bond distances, bond angles, and least square planes (49 pages); listing of structure factors (81 pages). Ordering information is given on any current masthead page.